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PREFACE

This Symposium on Long-Range Sound Propagation is the eighth assembly since 1981 of
a group of scientists who have specific interests in the observation, interpretation,
understanding, and modeling of sound propagation over distances ranging from hundreds
of meters to thousands of kilometers. The last, Seventh, Symposium was held on 24-26
July 1996 in Lyon, France at the Ecole Centrale de Lyon.

The present meeting was held on 9-11 September 1998 at The Pennsylvania State
University, with sponsorship by the University’s Applied Research Laboratory,
Department of Meteorology and Graduate Program in Acoustics. Again, it has been
organized to provide an opportunity for its participants to exchange ideas, to identify
areas of research challenge and opportunity, and to foster collaboration in potential
observational and computational programs. Most institutions having active research
programs in various aspects of atmospheric sound propagation were represented. The
papers selected for presentation were organized roughly into five sessions covering
relevant meteorology, field observations, ground and terrain effects, computational
models and methods, and effects of turbulence. The first session on meteorology relevant
to acoustics was organized intentionally to depart somewhat from prior symposia. Penn
State’s Department of Meteorology is the oldest, largest and one of the finest in the world.
Thus, a special effort was made to organize papers which would bring the symposia’s
attending acousticians up to date on acoustic propagation-relevant meteorological science
and technology. During the last decade, in particular, enormous progress has been made
in upgrading meteorological observational systems (e.g., the "modernization" program of
the U.S. National Weather Service), and in developing and applying new analysis and
forecast models for atmospheric phenomena ranging from turbulence and the boundary
layer, to storm or mesoscales, and up to continental and hemispherical scales. All these
scales are of interest to acousticians who must deal with problems ranging from the
spatial and temporal variability of audible sounds to the very long range propagation of
infrasound and blast noise.

Your hosts would like to express their appreciation to the participants for participating,
and for sharing their enthusiasm and knowledge with their colleagues. We want also to
especially thank Mrs. Dianne Taylor for the patient and outstanding support she
contributed to organizing and conducting the meeting.

Kenneth E. Gilbert
Applied Research Laboratory and Graduate Program in Acoustics
Penn State University, University Park, PA

Dennis W. Thomson
Department of Meteorology and Graduate Program in Acoustics
Penn State University, University Park, PA

D. Keith Wilson
U.S. Army Research Laboratory, Adelphi, MD
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Signal Propagation--Relevant Meteorology



Wave-propagation Engineering:
Bringing in the Meteorology

John C. Wyngaard
Departments of Meteorology, Mechanical Engineering, and GeoEnvironmental Engineering
508 Walker, Penn State University, University Park, PA 16802
814-863-7714; Fax 865-3663; wyngaard@ems.psu.edu

I thank the organizers for this opportunity to contribute to this symposium. I will
sketch out the broad aspects of what I call “wave-propagation engineering”. Since engi-
neering is often underappreciated by scientists, I suppose that is bound to be an unpop-
ular term. Nonetheless, three parallel developments over the past few decades now allow
us, we believe, to develop a new type of propagation calculation tool, one that (in the
words of a colleague) does not require you to invent your own atmosphere or ocean.

I will discuss the three developments in the context of electromagnetic (EM) propa-
gation in the lower atmosphere, but I believe they will apply also to acoustics, and in the
ocean. They are

e numerical prediction of atmospheric flows
e numerical simulation of turbulence
e parabolic-equation models of wave propagation

All three developments were made possible, of course, by the advent of large-scale, high-
speed digital computers about thirty years ago.

The first development has led to the remarkable skill of today’s meteorological pre-
dictions on atmospheric scales of tens of km to 1000 km. Today this mesoscale model-
ing, as it is called, is the workhorse of regional meteorology. Its resolution in the con-
tinuously turbulent region called the boundary layer, while not sufficient to resolve the
turbulence, is sufficient to resolve the key forcing mechanisms of the turbulence—e.g.,
the surface buoyancy flux, the surface stress, and the vertical variation of the horizontal
pressure gradient. As we shall discuss, knowledge of such parameters allows us to make
an approximate diagnosis of the refractive-index structure of the boundary layer.

At about this same time (ca 1970) came the second development, direct numerical
solutions of the basic fluid equations for turbulent flows. Because this direct numerical



simulation, or DNS, resolves the entire eddy size range, and because the width of this
range increases with the flow Reynolds number, only modest Reynolds-number flows can
be calculated; they correspond roughly to those of turbulence in a teacup, say. But this
was a no-excuses turbulence calculation, a breakthrough; finally we could actually study
in detail the extraordinarily intricate, three-dimensional, time-dependent, chaotic, non-
linear interactions that are turbulence.

A spinoff of DNS is a less pure form that today we call large-eddy simulation (LES).
It solves approximately the spatially filtered governing equations in which turbulence
scales smaller than the filter scale have been removed. As far as we can tell this gives ex-
tremely realistic turbulence fields. Figure 1 shows a “snapshot’ of a vertical plane in the
turbulent atmospheric boundary layer made visible through LES in a domain 2.5 km by
2.5 km in the horizontal by 1 km deep. This is from Martin Otte’s Ph.D. work; he used
about 200° grid points for this run. The tracer is the scalar product of turbulent vortic-
ity and the gradient of turbulent water-vapor mixing ratio, a good marker of turbulence.
It shows the instantaneously sharp but irregular top of the turbulent boundary layer and
the completely turbulent nature of the fluid within it. This is a turbulence-simulation
counterpart of the acoustic sounding that electrified the boundary-layer meteorology
community in the early 1970s.

Numerical simulation has fundamentally changed the way we deal with turbulence.
Until.perhaps three decades ago we viewed turbulence primarily in the dim light of the
ensemble average. The primacy of ensemble statistics generated through experiment and
observation testifies to the impact 50 years ago of the Russian school that includes Kol-
mogorov. Today, for better and for worse, the turbulence community has become sub-
santially if not predominantly simulation based.

However, we do not yet have a set of turbulence terms that refer specifically to in-
stantaneous fields. Our turbulence language has not kept up with our changing per-
spective; essentially all our turbulence terms are everyday words appropriated and given
special meaning in reference to turbulence statistics. As it becomes more accessible in
applications, turbulence might for this reason be initially even more confusing. I can il-
lustrate this with a contemporary example.

A review paper on parabolic equation EM propagation models contains the phrase
horizontally homogeneous refractive environments. Since the refractive environment in
the lower troposphere is usually turbulent, one meaning of the phrase might appear to
be turbulent refractivity of uniform composition in the horizontal. But that is an oxy-



moron, for turbulence is by definition spatially irregular in all three directions. Turbu-
lence statistics can be of uniform composition in the horizontal, however; in turbulence
language that is called horizontally homogeneous turbulence. Thus, a second meaning
could be turbulent refractivity of statistically uniform composition in the horizontal. Tur-
bulence was not explicitly mentioned in the paper, however, so a third meaning could be
refractivity that is nonturbulent and of uniform composition in the horizontal.

I wrote to the author. He intended the third meaning and did not think there
would be confusion. There was, but to minimize future confusion we have a phrase at
the ready: we call this the plywood approrimation (Khanna et al., 1998).

The third development, parabolic-equation (PE) techniques, makes it possible to
calculate wave propagation through a 2-D or 3-D field of refractive-index turbulence—
through an individual realization rather than a large ensemble of them. Our hard-earned
turbulence statistics are not obviously useful here, for the PE technique needs a random
field, not statistics. It is tempting to generate a turbulence field through random modes
with amplitudes chosen to fit the Kolmogorov (1941) spectrum. But this is apt to be un-
physical, because it fails to account for the phasing of the Fourier modes that results in
spatially coherent eddies. It fails also to connect turbulence with its forcing meteorology.

These three advances—mesoscale meteorological modeling, numerical simulation
of turbulence, and the PE technique for calculating wave propagation—are the essen-
tial ingredients of a wave-propagation solver on the mesoscale. With Ken Gilbert, Xaio
Di, Nelson Seaman, Dave Stauffer, Martin Otte, and Samir Khanna we are now using
these tools for calculating EM propagation in the marine boundary layer for frequencies
of hundreds of MHz to several GHz. The largest scales (5 km to 100s of km, say) of the
refractivity field are calculated with a mesoscale model. Today one can run a mesoscale
model for a specific region with actual initial conditions and predict the evolution of me-
teorological fields on a relatively fine grid for a few days into the future. Figure 2 shows
a computer rendering of the 34-hour forecasted cloud-water field over North America
on August 31, 1998, courtesy of Nelson Seaman. The forecast was made by the Penn
State/NCAR mesoscale model (known as MM5) on a 36-km grid mesh. MMS5 is a re-
search model similar in many respects to the most advanced operational forecast models
used by NOAA.

Figure 2 shows the early development of Hurricane Earl over the Gulf of Mexico,
about one day before it turned eastward and headed inland over the Florida panhandle.
The spiral cloud bands surrounding the eye of Earl are easily recognizable, and demon-



strate that today’s mesoscale models are indeed quite proficient.

Figure 3, top panel, shows the MMS5-calculated water-vapor field on a 2.5 km-deep
plane from an MMS5 grid column with 12-km horizontal resolution. The calculated
water-vapor field has only vertical structure within the grid column. We turn to large-
eddy simulation for the missing, subgrid-scale water-vapor field. The mesoscale model
gives the forcing conditions for the subgrid-scale fields within this grid column—the grid-
averaged surface fluxes, wind speed, water-vapor gradient at the boundary-layer top, and
the like.

The subgrid-scale water-vapor fields within the MM5 grid volume, which we cal-
culate from archived LES, look like Figure 4, which is from Martin Otte’s Ph.D. the-
sis work. This case happens to show a 2.5-km grid in a convective boundary layer that
is resolved down to about 20 m. We have developed a way to extend these turbulent
water-vapor fields to scales of 1 m when necessary (Khanna et al., 1998).

Figure 5 shows the fluctuating part of the water-vapor field in Figure 4; the area
mean has been removed. The highest-intensity fluctuations occur at the top of this en-
training boundary layer, where they contribute strong “troposcatter” in non-ducted envi-
ronments (Khanna et al., 1998).

Figure 6 shows the local refractive index structure-function parameter C:'Izv within a
typical LES domain in a convective boundary layer. It shows a horizontal plane near the
surface and a vertical plane as well. C% is a local generalization of the usual structure-
function parameter (Peltier and Wyngaard, 1995), an ensemble-mean statistic that is
proportional to the amplitude of the refractive-index spectrum in the inertial range of
wavenumbers. The local parameter derives from the Kolmogorov (1962) and Obukhov
(1962) revisions of the original Kolmogorov (1941) hypotheses about turbulence fine
structure. Wilson et al. (1996) discuss an application of these revised notions about tur-
bulence fine structure to atmospheric acoustics.

The superposability of EM refractive index allows us to combine numerical simula-
tion of turbulence (on scales from 1 m to a few km) and mesoscale modeling (on scales
of a few km to hundreds of km). In the EM problem the refractive-index fluctuations
are caused by water vapor, which is governed by a linear transport equation. Thus, we
can diagnose the forcing conditions for the water vapor and scale archived LES fields to
produce the missing fine structure in the mesoscale refractive-index fields. The bottom
panel of Figure 3 shows the resulting field. There is a good deal of boundary-layer mete-
orology involved in this superposition, but we believe it is all within the present state of



the art.

That is a quick review of our interdisciplinary approach to EM propagation. The
acoustics problem is more complicated than the EM problem in that its refractive in-
dex depends in part on the velocity field. Velocity fields, being governed by a nonlinear
equation, are technically not superposable. Nonetheless it ought to be possible to di-
agnose the SGS velocity field from local grid-scale conditions in a broadly similar way,
while accommodating the constraints of nonlinearity. We stand ready to collaborate on
such efforts.
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Figure 1. A “snapshot” of turbulence in a vertical plane of a convective atmospheric
boundary layer calculated through large-eddy simulation. The tracer, the dot product
of vorticity and the water-vapor gradient, is essentially zero in the non-turbulent fluid
above the boundary layer. The instantaneous top of the boundary layer is quite sharp.
Graphics courtesy Martin Otte.
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Figure 2. A computer rendering of the 34-hour forecasted cloud-water field over
North America on August 31, 1998, showing the early development of Hurricane Earl
over the Gulf of Mexico. The forecast was made by the Penn State/NCAR mesoscale

model MMS5 on a 36-km grid mesh. Graphics courtesy of Nelson Seaman.
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Figure 4. Detailed water-vapor fields calculated from LES for a 2.5-km domain and
resolution of 20 m. Graphics courtesy Martin Otte.

1 Km Height




«

11

1 Km Height

2.5 Km Range —>

Figure 5. The fluctuating part of the water-vapor field in Figure 4; the area mean
has been removed. The highest-intensity fluctuations occur at the top of this entrain-
ing boundary layer, where they contribute strong “troposcatter” in non-ducted environ-
ments. Graphics courtesy Martin Otte.



Figure 6. The local refractive index structure-function parameter é’lz\, within a typ-
ical LES domain in a convective boundary layer. Contours of é’fv are shown in a hori-
zontal plane near the surface and on a vertical plane as well. Graphics courtesy Samir
Khanna.
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Mesoscale Analysis and Forecasting

Nelson L. Seaman
Department of Meteorology
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University Park, PA 16802
email: seaman@ems.psu.edu
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Refraction of wave energy in the atmosphere is primarily a function of the vertical
structure of temperature, water vapor and pressure. For a standard lapse rate, horizontally
emitted EM waves are bent upwards away from the earth’s surface. However, in very stably
stratified conditions, a trapping layer is formed, in which horizontally emitted EM waves are
bent downward. If the base of the trapping layer is above the surface, so that waves below
the layer can propagate upward, then the waves alternate between upward and downward
propagation inside a wave ducr. To simplify interpretation of the refractivity, a "modified
refractivity”, M, can be defined such that the effect of the earth’s curvature is removed (Burk
and Thompson 1997). That is, dM/dz = O describes the refractivity condition for which a
horizontally emitted wave bends downward just enough to remain at the same altitude above
a spherically curved earth. When M increases (decreases) with height, EM waves are bent
upward (downward) relative to the earth.

Traditionally, estimates of refractivity conditions have been made using intermittent
radiosondes, which are then assumed to represent horizontally homogeneous and stead-state
propagation conditions over a range of up to 100 km. This approach has met with only
limited success. Consequently, it is appropriate to comsider data-assimilating mesoscale
models as a means for analyzing and predicting the refractivity structure of the atmosphere
such that variability in space and time is accounted for. To enable this modeling approach
to succeed for the full range of conditions in which wave energy (electromagnetic [EM] or
sound waves) can be detected near the surface at long range, a mesoscale model should be
applied in conjunction with a turbulence model (large eddy simulations, or LESs).

In the present study, the Penn State/National Center for Atmospheric Research
mesoscale model, MMS, was run for the week of 24-31 August 1993 during the VOCAR
(Variability of Coastal Atmospheric Refractivity) experiment. The VOCAR study collected
observations of EM refractivity along the coast of southern CA. During the period of
interest, the summer climatology of the region, which is characterized by the synoptic-scale
East Pacific Ridge, was interrupted for two days when a weak tropical storm moved north-
northeastward from southern Baja California to the mouth of the Colorado River. The
storm spread a deep layer of moist air through the mid-troposphere over study area,
displacing the dry air normally found above the marine atmospheric boundary layer (MABL)
in the coastal region. The objectives were (1) to evaluate model physics and data
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assimilation techniques necessary for improved mesoscale predictions of the MABL and its
capping inversion layer (which defines the trapping and ducting layers), and (2) to identify
the importance of synoptic-scale and mesoscale processes which can contribute to the
evolution of the MABL and ducting characteristics. This work is a preliminary step in the
development of multi-scale model predictions covering the full range of scales controlling
refractivity and EM propagation, from the mesoscale (2 - 2000 km) to the turbulence scales
(0.01 - 2000 m).

The MMS5 is a non-hydrostatic mesoscale model with a terrain-following vertical
coordinate. A full description of the model equations and numerics is given by Grell et al.
(1994). In this study, four nested grids were used, with mesh sizes of 108-km, 36-km, 12-km
and 4-km, centered on the southern CA coast. The domains had 53 layers in the vertical
direction, with layer thicknesses of 40 m from the surface to 600 m, and 24 layers below
1500 m AGL. The top of the model was at 100 mb. Initial and lateral boundary conditions
were derived from standard surface and upper-air data obtained from NCEP (National
Centers for Atmospheric Predictions).

Special data from the VOCAR study confirm that the MMS model simulates the
synoptic-scale and mesoscale variability in the depth of the MABL and the height and
intensity of the trapping layer in the continuous seven-day simulation (Williams et al. 1998).
Over time scales of several days, MABL characteristics were shown to be a function
primarily of synoptic-scale subsidence in the East Pacific Ridge and surface heat and
moisture fluxes from the ocean surface. At the mesoscale, diurnal variations in the vertical
velocity field due to the mesoscale coastal sea-breeze were found to have a significant
impact on the MABL depth, measured at San Nicolas Island (about 120 km offshore). Mid-
tropospheric moisture flowing outward from the tropical storm was successfully simulated
and produced a complex vertical moisture structure in the California Bight (Figure 1) that
contributed to a strong surface-based ducting layer on August 26-27 (Figure 2). Finally, the
MMS5 developed gravity waves in the MABL as the regional flow encountered the coastal
mountains of southern CA.

Burk, S.D. and W.T. Thompson, 1997: Mesoscale modeling of summertime refractive
conditions in the Southern California Bight. J. Appl. Meteor.,36, 22-31.

Grell, G.A., J. Dudhia and D.R. Stauffer, 1994: A description of the fifth-generation
Penn Stat/NCAR mesoscale model (MM5). NCAR Technical Note, NCAR/TN-
398+STR, 122 pp.

Williams, R.T., N.L. Seaman, D.R. Stauffer and J.C. Wyngaard, 1998: Mesoscale
simulation of electromagnetic refractivity in surface and elevated ducts during the
VOCAR experiment. Proceedings of the 1997 Battlespace Atmospherics Conference,
2-4Dec. 1997. SPAWAR-SCSD Tech. Doc. 2989. Anderson and Richter, Eds., 611-620.
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Figure 1. North-south vertical cross section of water vapor mixing ratio (g kg) versus
pressure (mb) simulated by MMS5, at 0500 PDT (1200 GMT), 26 August 1993. Cross
section follows 119.5 W from Santa Barbara through San Nicolas Is. southward to 29
N. Contour interval is 2 g kg”'. MMS results from 12-km domain.
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Figure 2. Observed (solid) and MMS5-simulated (dashed) modified refractivity (M) at
San Nicolas Is. versus height (m) on three consecutive days (25-27 August 1993) at 0500
PDT (1200 GMT). M-profiles show a trapping layer (IM/dz <0) and 2 ducting layer.
MMS5 results from 12-km domain.
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1. Introduction

Audible sound signals that have propagated a few tens to hundreds of meters through the
atmosphere depend critically upon conditions in the atmospheric surface layer. For sounds
propagated over hundreds of meters to tens of kilometers, the conditions in the atmospheric
boundary layer are of major importance. The state of, and variations in the atmospheric boundary
layer and its lowermost part, the atmospheric surface layer, depend not only upon the properties
of the earth’s surface (including type and state of the vegetative cover) but also upon the time of
day and the general weather conditions. Important factors include time of year, cloudiness, and
whether or not the site is under the influence of high or low pressure. In the atmospheric
boundary layer the critical meteorological variables are the vertical gradients of velocity and
temperature. Path-integrated relative humidities are important only if the frequencies of concern
are greater than 1-2 kHz. By contrast, the properties of ambient turbulence are very important,
particularly for scattering easily detectable sound into regions that traditionally have been
regarded as "shadow zones."

In order to understand "really" long-range sound propagation, signals that have traveled
hundreds to thousands of kilometers, occasionally even completely around the earth, it is
necessary to switch meteorological hats. Turbulence, always present in the atmospheric
boundary layer, is of lesser importance because its largest scales, a km or so, correspond to the
shortest of the infrasound wavelengths (roughly 300 m at 1 Hz, 30 km at 0.01 Hz). Instead what
becomes critically important are the velocity and temperature gradients throughout the entire
troposphere, stratosphere, and well into the mesosphere, essentially "inner" space. Thus, the
relevant atmospheric dynamics are those from weather to planetary scales, and the features of

interest are weather systems and seasonally changing, latitude- and longitude-dependent so-
called long wave patterns.

Since WWII several schools of engineers and scientists, who have been concerned with
problems of environmental signal propagation, have depended heavily upon climatological
profiles of, for example, radio refractivity in the atmosphere and sound speed in the ocean. This
approach has worked to some extent only because the radio refractivity doesn't depend upon
atmospheric winds, and in the slowly varying oceans sound speeds are much higher than those of
ambient currents. In the atmosphere the natural spatial and temporal variabilities of temperature,
pressure, and winds are such a large fraction of the mean sound speed at any given location that
it is unwise to define or depend upon profiles of a climatological mean type.
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The application of some climatological data is necessary because there are few routine
observations available for altitudes in excess of 30 km. However, for the troposphere and lower
stratosphere the analyzed observations used today for daily global weather forecasts are of such
high quality and so readily accessible that it only makes sense to use what is routinely available.
Furthermore, the "observations” that are potentially available for uses in propagation models are
even "better” than the actual atmospheric measurements.

All of the operational weather analysis and forecast models use some form of dynamic
initialization. Therefore, the state of the atmosphere is "filled in" in a dynamically consistent
fashion between the relatively sparse, in space and time, actual measurement locations. In
addition, the time steps in the forecast models are typically a few minutes. Thus, by using data in
the models for shorter times than the 3- to 12-hour forecast intervals, it is possible to intelligently

infer the evolution of the atmospheric sound propagation medium at the resolution of the model
over global scales.

The remainder of this paper provides some examples of meteorological and computed sound
speed profiles over the continental United States during January and July 1996.

. Examples of Long Range Propagation-Relevant Profiles

To illustrate the sensitivity of the sound speed profiles to weather- (synoptic-) scale-
imposed changes in the ambient velocity and temperature profiles, we chose to examine the
profiles relevant to propagation of a large burst of infrasound from an arbitrary location in
southern Nevada. Thus, the source location was defined to be 36.75 N, 116.5 W. During the
early years of above-ground nuclear weapons testing this general area was occasionally a source
of large infrasound signals. Figure 1, thus, shows radials extending from southern Nevada along
which one might be interested in knowing the sound velocity profiles for purposes of predicting
the magnitude of signals received at hypothetical sensors deployed to the east in an array across
the U.S. and Canada.

Having above disparaged the use of climatological profiles as input to various signal
propagation models, it may now seem strange for us to have computed monthly mean, January
and July 1996, profiles for use in this paper. Remember, however, that the sound velocity
profiles, or sound speed along any particular specified bearing, at any particular time depend
upon the ambient atmospheric velocity and temperature profiles that are constantly changing as
the weather systems advect and evolve. Defining the advection and evolution of these systems is
essentially the meteorologist’s weather analysis and forecasting challenge. If the models used to
solve that problem are working well, then the profiles from them necessary to predict infrasound
propagation will provide the best available environmental data.

Our choice to evaluate monthly means also was somewhat arbitrary. The two months were
chosen to represent cold-season versus warm-season statistics, while the year was chosen for its
high data availability and lack of extreme weather. By calculating monthly means, it meant that
two analyses per day, 00 and 12 UTC, or 62 profiles were used in estimating the profiles of, for
example, standard deviations of sound speed during the month.
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Figure 2 shows the mean temperatures as a function of latitude and pressure altitude along
80 W during January 1996. The nearly vertical orientation of the isotherms reflects the normal,
substantial, wintertime north-south gradient of temperature at the surface. Recall that in the
absence of daylight, and with large areas of snow cover, the earth’s surface is essentially
constantly cooling north of the Arctic Circle.

Figure 3 illustrates the mean zonal (west to east) winds in July. The dominant feature is the
core of roughly 24 m/s winds at 42 N and about 200 mb pressure altitude (about 11.5 km MSL).

In the winter this jet stream core was about 7 or 8 degrees further south and the wind speeds
were roughly twice as fast.

Figures 4 and 5 show the source-referenced sound speed profile along 80 W as a function of
north latitude and pressure altitude for January and July, respectively. Note the substantial
difference in the pattern of the profiles. During the winter there is a sound speed maximum at
about 30 N and 600 mb height (at about 4 km MSL) that would produce through downward
refraction a zone of enhanced sound pressure levels somewhere "downstream.” On the other
hand, there are almost no significant wintertime vertical gradients at the mid-latitudes, and at the
northernmost latitudes the atmosphere is upward refracting at altitudes above 3 km.

Figure 6 shows the standard deviation of the sound speeds as a function of latitude and
pressure altitude for January. Note that standard deviation of sound speed in the vicinity of the
jet core is about 18 m/s or roughly 5 percent of the mean sound speed. This variation is
essentially due to changes throughout the month in both the location and speed of the jet stream.

In order to illustrate the longitudinal variabilities in the mean sound speed profiles, we show
in Figures 7 and 8, respectively, the mean sound speed profiles (again referenced to a
hypothetical Nevada source) at eight different latitudes for 70 W and 110 W. In these examples
the obvious differences are essentially the result of the influence of the wintertime, over-
continent cooling of the air masses passing over North America. For the same longitudes in the
summer (Figures 9 and 10) the differences are not nearly so large.

II. Concluding Remarks

For any serious analysis or forecast of long range infrasound propagation, data of the sort
that we used to produce the illustrations shown in this paper must be combined (appropriately
splined) with climatological data for the upper stratosphere, mesosphere, and lower
thermosphere to produce the best possible set of latitudinally and longitudinally varying sound
speed profiles referenced to a potential source of interest. This is not a trivial exercise for it is
necessary to apply the data as precisely as possible to the location and magnitude of a possible
source, and the profile set needs to be reevaluated on time scales corresponding to significant
changes in the tropospheric weather conditions, almost certainly at hourly or shorter intervals.

Fortunately, there are a number of atmospheric analysis and forecast models that are
available and capable of producing the state-of-the-art meteorological fields necessary as input to
various sound propagation prediction codes. For global scales these include the CCM3 (NCAR),
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SKYHIGH (GFDL-Princeton), and ECMWF and UGAMP (European Center) models. For finer,
mesoscale, high spatial resolution analyses and forecasts some of the better known models in the
meteorological community are the following: MMS5 (Penn State/NCAR), ETA (National

Meteorological Center), NOGAPS (Fleet Numerical Operations Center) and ARPS (Univ. of
Oklahoma).

At infrasonic frequencies there are a number of meteorological phenomena, including
gravity waves, clear air turbulence, and convective storms, which produce pressure fluctuations
at precisely the sound frequencies of interest. What is noise to the acoustician is signal to the
meteorologist, and vice-versa! In the computer codes used for large eddy simulation, part of the
output includes information regarding pressure fluctuations as a function of time at every grid
point. Unfortunately, to the authors’ knowledge, this is not done in any of the above- referenced
global or mesoscale models. Perhaps a study of the potentially available pressure fluctuation
data should be conducted. It could be useful in defining preferred or worst case conditions for
locating globally dispersed infrasonic sensors. Hopefully, we will be able to report on the results
of such a study at the next symposium.
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Figure 1. Radials extending from a hypothetical sound source in southern Nevada.
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Mean Zonal Wind (m/s) July 1996
Longitude: 80 W, Source: 36.75N, 116.50 W
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Figure 3. The mean zonal (west to cast) winds in July 1996.
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Longitude: 80 W, Source: 36.75 N, 116.50 W
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Figure 5. Source-referenced sound speed profile along 80W longitude as 3 function of north
latitude and pressure altitude for July 1996.
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Mean Sound Speed Profiles: Longitude 070 W
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Mean Sound Speed Profiles: Longitude 070 W
July 1996 Source: 36.75 N, 116.50 W
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Figure 9. Variabilitics in the mean sound speed profiles in July 1996 at eight different latides
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Abstract

A remote, wireless, intelligent environmental and acoustic sensor node is described.
Remote sensor nodes that incorporate environmental and acoustic sensors to provide both
acoustic measurement capability and characterization of local meteorological conditions
have been developed and tested. Remote environmental sensors permit measurement of
temperature, temperature gradient, humidity, barometric pressure, wind speed and
direction, and insolation (the ratio of incident to reflected solar radiation). The sensor
nodes include automatic data logging and wireless communication capability. Wireless
communications permit remote data collection and sensor networking. The design and
performance characteristics of the sensors are discussed, and typical measurement results
are presented. Local environmental data from the remote sensors is combined with
upper level wind and temperature data from weather databases to predict the sound
velocity profile for the observed environmental conditions and predict received sound
pressure levels from a remote source.

Introduction

Complete characterization of long range sound propagation includes not only the
measurement of acoustic source and receiver sound pressure levels, but also the
environmental parameters affecting sound propagation. The availability of inexpensive,
accurate, and reliable sensors, powerful microprocessors, and wireless communications
technology greatly simplify the real-time measurement of remote acoustic and
environmental data. The use of integrated environmental and acoustic sensor packages
with wireless communications eliminates the need for long cables, improves the
reliability of measurements, and can reduce staffing requirements for long range sound
propagation measurement. A series of remote environmental and acoustic sensor nodes
used in conjunction with a central sensor node at an acoustic source can simultaneously
characterize sound propagation in muitiple directions over a wide area.

The dependence of acoustic propagation on the weather is well known. This dependence
is driven by two main components: the wind and temperature gradients. The wind and
temperature profiles (variation with height above the surface) both affect the sound
velocity profile (the speed of sound as a function of height above the surface). By
combining measurements from surface environmental sensors with upper atmosphere
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data, the temperature and wind profiles (and consequently the sound velocity profile) can
be calculated. Fortunately the necessary upper level atmospheric wind and temperature
data are available from weather forecast models over the Internet [1,2]. Such models are
updated every few hours and are used to predict surface winds and temperatures as well
as barometric pressure, humidity (dew/frost point), wind and temperature over elevations
of interest for air traffic. The surface meteorological data gathered at each remote node
includes temperature at two heights (e.g. 0.2m and 1.0m), wind speed and direction,
humidity, barometric pressure, and solar flux.

Remote Sensor Node

The remote sensor node has three functional components: a collection of environmental
and acoustic sensors, a data logger, and communications electronics. The environmental
and acoustic sensors are mounted in or attached to the outside of a cylindrical tube as
shown in Figure 1. The suite of environmental sensors includes 2 temperature sensors for
measuring air temperature and the temperature gradient, 2 differential pressure sensors
for measuring wind speed and direction, a humidity sensor, an absolute pressure sensor
for measuring barometric pressure, and a pair of optical thermopile sensors for measuring
insolation (the ratio of incident to reflected solar radiation).

The temperature sensors are attached to the outside of the main sensor tube. The lower
temperature sensor measures the air temperature at a height of approximately 0.15-m
above the ground, while the upper temperature sensor measures the air temperature at
approximately 1 m above the ground. Figure 1 shows the two temperature sensors
attached to the side and top of the main sensor tube.

Figure 1. Remote sensor node sensor tube.

The humidity, barometric pressure and wind sensors are all housed inside the main sensor
tube. The operation of the wind sensor is described in the next section of this paper. The
optical thermopiles used to measure the incident and reflected solar radiation must be
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mounted on the outside of the tube. A microphone can also be mounted on the outside of
the tube for acoustic measurements.

The differential pressure sensors used to measure the wind speed and direction and the
absolute pressure sensor used to measure the barometric pressure are all micro-machined
silicon devices. The temperature sensors are also silicon devices. The humidity sensor is
a capacitive device, which requires an external timer circuit to measure the humidity
dependent capacitance. The optical thermopiles operate as photodiodes.

The remote sensor node uses a Tattletale model TT8 data logger to acquire, process, and
log data from the node’s environmental and acoustic sensors. The Tattletale model TT8
is manufactured by Onset Computers and includes a Motorola 68332 microprocessor, 1
MB of dynamic RAM, 8 channels of 12-bit analog to digital conversion, and 2 RS-232
serial data ports. An add-on module provides 15 MB of non-volatile compact flash
memory. The Tattletale data Jogger and sensor interface electronics are mounted in a
portable metal case. Figure 2 shows a photograph of the Tattletale. Additional sensors
are mounted in the case with the data logger and sensor interface electronics to monitor
temperature, humidity, and battery voltage.
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Figure 2. Tattletale data logger.

Data from the remote sensor nodes can be stored on the compact flash cards or
transferred to a central monitoring location via wireless modems. The remote sensor
node uses a FreeWave® wireless modems connected to data logger’s serial port. At the
central monitoring node, another wireless modem is connected to a laptop or desktop PC.
The FreeWave wireless modems operate in the 902-928 MHz frequency band and use
frequency-hopping spread spectrum technology to avoid interference. The modem’s
range can be extended to 20 mi. with the addition of a directional YAG antenna.
Configuring an intermediate modem as a repeater can also extend the modem’s range.
Data transfer rates of up to 115.2 k baud have been achieved. Figure 3 shows a
photograph of the FreeWave modem.
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Figure 3. FreeWave wireless modem.

Wind Speed and Direction Measurement

The remote sensor node used 2 micro-machined differential pressure sensors mounted in
the main sensor tube to measure wind speed and direction. Flow due to wind causes
small pressure differences on opposite sides of cylinder [3,4]. The differential pressure
sensors are mounted inside the tube and connected to ports on opposite sides of the tube
as shown in the drawing in Figure 4.
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Figure 4. Differential pressure sensors mounted on opposite sides of cylindrical
sensor tube,

The wind speed and direction are computed from the differential pressure measured
across the North —South (NS) and East-West (EW) pressure ports in the cylinder walls.
Given the measured differential pressures, the corresponding orthogonal components of
the wind vector are

U ys =sgn(APy,) *\/2|APNS|/p
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Uy =5g0(APwy) *TRP ]

The overall wind speed and direction are given by

0] =U% +UZ%,
LU =tan™(Ug, / Uys)

Figure 5 shows the results of wind tunnel tests of the remote sensor’s wind speed and
direction measurement capability. The plot shows that the wind speed calculation is

more accurate at higher speeds and most sensitive to measurement errors at low flow
speeds. )
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Figure 5. Wind tunnel test of remote sensor wind speed and direction measurement.

Reducing the diameter of the sensor tube significantly improves the accuracy of the
sensor. The data in Figure 5 were taken with the differential sensors mounted in the
walls of a 3-in diameter pipe. Figure 6 shows the results of wind tunnel tests of the wind
sensor with the differential pressure sensors mounted in a 1-in diameter pipe. The upper
plot shows wind direction measured using the differential pressure sensors on the y-axis
versus the true wind bearing angle on the x-axis. The bearing data is for a 3 m/s flow in
the wind tunnel. Only one data point shows any significant error. The lower plot in
Figure 6 shows the computed and measured wind speed, and again shows good
agreement.
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Figure 6. Wind sensor results for 1-in diameter tube.

Sound Propagation Prediction

The ultimate goal in building the remote sensor nodes is to improve the accuracy and
reliability of long range sound propagation measurements and to acquire correlated
measurements of environmental and acoustic data. Figure 7 shows an example of the
type of data collected by the remote environmental and acoustic sensors. The upper plot
in Figure 7 shows the temperature measured by the upper and lower temperature sensors
over approximately 60 hours. The lower plot in Figure 7 shows the corresponding
received sound pressure level for a 54 Hz tone, with the source approximately 450 m
from the receiver. The data presented in Figure 7 verify the general relationship between
the measured temperature gradient and sound propagation — sound travels farther (less
attenuation) when then temperature gradient is positive and is attenuated less when the
temperature gradient is negative (warmer air near the ground). When the temperature
gradient is positive the air near the ground is cooler than the air aloft and the sound
refracts downward, increasing the received sound pressure level. Downward refracting
conditions typically as occur in the early evening. A negative temperature gradient
corresponds to the case where the air is warmer near the ground and cooler aloft, and the
sound refracts upward. This condition typically occurs during a hot afternoon due to
solar heating of the ground
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Figure 7. Measured temperature and acoustic data.

In addition to obtaining correlated long-term measurements of the environmental and
acoustic data we also want to develop and verify models for predicting the sound velocity
profile from measurements of the local meteorological conditions and upper atmosphere
data available over the Internet. Figure 8 and Figure 9 show comparisons of modeled and
measured temperature and wind velocity profiles. The modeled temperature and wind
speed profiles are computed based on temperature and wind data measured at the remote
sensor node and upper atmosphere temperature and wind data. Figure 8 shows that the
modeled temperature profile agrees very well with temperature data measured using a
RASS. Figure 9 shows that the modeled and measured (using a SODAR) wind speed
profiles have the same overall shape but differ by a constant of approximately 3 m/s over
the first 200 m height.
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The modeled temperature and wind speed profiles are used to compute the corresponding
sound velocity profile [2]. The sound velocity profile is then used in the Green’s function
PE to generate propagation loss tables for the measured meteorological conditions [5].
Finally, the propagation loss tables are used to predict received sound pressure levels for
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continuous sources at specified frequencies and ranges. Figure 10 shows measured and
predicted receiver sound pressure levels. The predicted sound pressure levels are based
on data measured at a remote sensor node in downward refracting (nighttime) conditions.
The measured levels were acquired using a microphone attached to the remote node.
Figure 10 shows very good agreement between the predicted and measured sound
pressure levels at 4 out of 5 source tone frequencies, with less than a 10 dB difference at
the 5 frequency.
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Figure 10. Measured and predicted receiver sound pressure levels.

Conclusions

A system of remote, wireless, intelligent environmental and acoustic sensor nodes
designed for long range sound propagation measurements was described. Each remote
sensing node includes environmental and acoustic sensors to facilitate characterization of
the received acoustic signals and the local meteorological conditions affecting sound
propagation. The suite if environmental sensors includes two temperature sensors for
measuring the temperature gradient near the ground, two micro-machined differential
pressure gauges to sense wind speed and direction, optical thermopile sensors to measure
solar flux, a capacitive humidity sensor, and a micro-machined pressure sensor for
measuring barometric pressure. The measured surface temperature gradient and wind
speed and direction are combined with upper elevation wind and temperature data from
aviation weather allow a sound velocity profile (SVP) to be modeled. The SVP is used in
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a parabolic equation sound propagation model to predict sound attenuation vs frequency
and range for the environment.

Experimental data were presented to demonstrate the measurement of wind speed and
direction from pairs of differential pressure sensors located on opposite sides of a
cylinder placed in the flow. Additional experimental data demonstrated the correlation
between diurnal variations in the temperature gradient measured by the sensor node and
variations in received sound levels. The computation of sound velocity profiles from
sensor node and upper elevation meteorological data was described and an example was
presented that demonstrated the agreement between predicted and measured sound
pressure levels.
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Abstract

This paper describes the method and the results of the investigation into the performance of two
acoustic helicopter detection and classification algorithms, for a range of meteorological conditions.
A measurement station was developed to automatically record wind and environmental noise for
different meteorological conditions. Meteorological parameters were measured simultaneously. Sound
speed profiles were estimated from the measured meteorological data. Simulated data of a helicopter
was used as a source signal. The Fast Field Program (FFP) was used to calculate the acoustic
attenuation for a chosen range of frequencies and source receiver distances. The received signal was
calculated at 4 ranges, using the acoustic attenuation and the recorded noise files, and was
subsequently submitted to both classification algorithms. Both algorithms performed well, up to and
including a downwind force 5, and up to and including upwind force 3.

1. Introduction

In the project “Acoustic Helicopter Classification” a number of algorithms to detect and classify
helicopters were developed at TNO-FEL. The possibility of detecting and classifying helicopters
using their acoustic signature, raised interest in the performance of the algorithms in realistic outdoor
conditions. To estimate the effect of different meteorological conditions (wind speed, turbulence)
information about the acoustic propagation and the properties of the noise caused by wind and
turbulence was needed.

This paper describes the theoretical approach, the data collection procedure, the measurement station,
the calculation of the propagation effects, and the effect on the classification performance. The
algorithms used for detection and classification were presented at the 6® symposium on LRSP [1).
Only two algorithms were chosen for further analysis (template matching and harmonic series), since
they can easily be adapted to classify additional types of helicopters.

2. Theory

The problem stated in the introduction is to estimate the influence of meteorological conditions,
environmental noise, and acoustic propagation on the pérformance of helicopter detection and
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classification algorithms. We assume that such an algorithm operates on the output from a single
acoustic sensor. We regard the received signal at the sensor position as the convolution of the source
(helicopter) signal and the impulse response of the atmosphere, with noise added:
r(t)=s(@)y<h(t)+n() 2.1

r=received signal at microphone

s =source signal

h=impulse response of the atmosphere
n=received noise at microphone

Or, if the calculation is performed in the frequency domain:
R(f)=S(fYH(f)+ N(f) (2.2)

This procedure has the benefit that it speeds up the calculations significantly, since the convolution of
s(t) and h(t) is replaced by a Fourier transform and subsequent multiplication of S(f) and H(f). As
source signal we decided to use simulated helicopter data, since there are no measurements available
to us recorded under free space conditions. The helicopter noise simulation procedure uses the lift and
drag forces on the rotor blade calculated with a helicopter preliminary design program by de Vreeze
{2]. The simulation procedure is described in van Koersel [3).

2.1 Wind Noise and Turbulence

Wind noise on a microphone is essentially fluctuation of the air pressure caused by the movement of
the medium. Morgan and Raspet [4] have shown that for outdoor measurements sound pressure
variations are mainly caused by the turbulence of the airflow passing over the microphone. For low
frequencies a microphone acts as a point receiver, and responds to the dominating turbulent flow
rather than the interaction between the flow and the microphone itself. The rms pressure fluctuation
can be approximated by:

p=p UV (2.3)
p = medium density [kg/m’)
U = turbulence [m/s]
V = average velocity [m/s]

Formula 2.3 shows that the average wind velocity V and the turbulence U are the main parameters
that determine the magnitude of the wind noise p. V is the average of the wind speed v. U is the rms
value of u, which is the deviation of v from its average value v. (U is equivalent to the standard
deviation of the wind speed). We have set up classes for V and U, and record noise samples N(t)
measured with a set of microphones for these classes. The class limits for the average wind speed are
the well-known Beaufort scale limits, the turbulence class limits were chosen after trial
measurements. Both are shown in table 2.1. In our case v is measured at 3.4 s intervals and V is the
average over 10 minutes. U is calculated every 10 minutes from the stored values of v and V. How
and where the measurements were performed and the number of noise samples collected is described
in chapter 3.
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Table2.1:  Wind speed and turbulence classes set up to record noise data.

Class Number | Wind speed [m/s) Turbulence [m/s)
0 <3 <0.42
1 0.3-1.6 0.42-0.83
2 1.6-3.4 0.83-1.25
3 3.4-55 1.25-1.67
4 5.5- 8.0 1.67-2.08
5 8.0-10.8 2.08-2.50
6 10.8-13.9 2.50-2.92
7 13.9-17.2 2.92-3.33
8 17.2-20.8 3.33-3.75
9 20.8-24.5 >3.75
10 245-28.5
11 >28.5
2.2 Propagation Influence

The noise generated by a source outdoors is attenuated by propagation through the atmosphere. To
calculate the attenuation of the source signal a sound propagation model is used, which is described in
detail by Raspet et al [5]. The acoustic propagation problem is formulated in terms of a Green’s
function integral, and is solved using the Fast Field Program Technique. The program uses a layered
model of the atmosphere, bounded by a ground surface. The properties of the medium are assumed
constant along the distance of propagation. The FFP program was made available to us by the U.S.
Department of Army, Construction Engineering Research Laboratory (CERL), Corps of Engineers,
Champaign, IL, USA. Usually the model is applied to calculate the sound pressure or the attenuation
as a function of the distance for a specific frequency. For our purpose however we are interested in
the attenuation as a function of the frequency at a specific distance. Therefore a “shell” was written
around the FFP, to perform a number of calculations (for a chosen range of frequencies) and produce
a table of the attenuation as a function of frequency H(f) for 4 chosen ranges.

Parameters that determine the accuracy of the FFP calculation are the extra loss (<7.5/range), the
atmospheric absorption, the number of FFT panels, and the FFT length in relation to the maximum
range and the frequency. The adapted program was tested for a specific case. This case was used in an
earlier report [6] to compare the results of a ray tracing program (Rayflux) to results from another ray
tracing program by Vermaas [7], and a wave field extrapolation model by Nijs and Wapenaar [8]. The
FFP results show excellent agreement with the results of all models for the used test case. :

23 Atmospheric Profiles

For the calculation of the propagation attenuation with FEP, accurate information of the speed of
sound as a function of height c(z) is essential. The speed of sound is determined by the air density and
the component of the wind speed in the direction of propagation. In our case direct measurement of
the speed of sound was not practical, since acoustic data was collected for different meteorological
conditions during an entire year. Measurement of the temperature and wind speed at different heights
was not possible for the same reason. This problem was solved using a model developed by Monin-
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Obukhov (Huisman et al [9], Salomons et al [10] and Huisman [11]) that describes the wind speed and
temperature as a function of height with different functions for either a stable, unstable or neutral
atmosphere. The parameters that are used in the Monin-Obukhov model are estimated using the values
of wind speed, temperature and surface roughness that are measured during data collection:

wind speed at 2 m height

wind speed at 10 m height

temperature at 2 m height

relative humidity

atmospheric pressure

surface roughness of the measurement site
The wind speed at 10 m height is obtained from the KNMI, who operate a meteorologlcal station
close to our site (distance approximately 5 m). The Monir-Obukhov model and the estimated
parameters are used to calculate the profile of wind speed v(z) and temperature T(z) as a function of
height. From these profiles a sound speed profile c(z) is calculated using formula 2.4. This sound
speed profile c(z) is used as input for FFP.

’ T(z)
c(2)=v(2)+335.1,|1 + —== 57315 (2.4)

c=sound speed [m/s]
v=windspeed[m/s]
T =temperature[°C]

For all collected data files belonging to a class of wind speed and turbulence the meteorological data
is averaged, and sound speed profiles are estimated using a procedure that takes zg, u(2), u(10) and
t(2) as input, and produces the parameters that are needed to calculate the profiles. The profiles (45
downwind cases and 45 upwind cases) are calculated and written into a file formatted to be read by
the FFP input processing program. A sample profile calculated for wind speed class 6 and turbulence
class 6 (neutral atmosphere) is shown in figure 2.2.
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Figure 2.2  Wind speed and temperature profile as a function of height, and resulting sound speed profile for
wind class 6 and turbulence class 6.

3. Data Collection

The measurement station was manufactured in-house for this project. The objective of the station was
to record acoustic windnoise automatically for different classes of wind speed and turbulence. The
data collection hardware consisted of:
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e 486/66N PC with 200 Mb hard disk

¢ TransEra model 410 data acquisition board with 16 single or 8 differential input channels, a 13 bit
A/D converter and programmable gain

¢ a Sensor SM6B vertical geophone, a Bruel & Kjaer 1/2 inch pre-polarised condenser microphone

(type 4129) and a TNO-weatherproof condenser microphone

geophone and microphone amplifier (2) with manual gain adjustment

8 order Butterworth anti-aliasing filters

a “watchdog™ that switched off power to the PC after 8 restarts

a Rheinhardt CWS7 meteo station that measured relative humidity, temperature, solar radiation,

wind direction, atmospheric pressure, wind speed, and precipitation

The hardware was built into a steel housing, and a mast (2 m height) was constructed for the meteo

station. For prolonged use outdoors the B&K microphone was built into a PVC container with an

“umbrella” on top. An in-house developed condenser microphone for outdoor use was placed next to

the B&K for comparison. A picture of the steel housing with the PC and signal conditioning hardware

is shown in figure 3.1.

Figure 3.1:  The measurement hardware (PC, filters and amplifier) in the steel housing.

The entire set-up (sensors, PC, and meteo station) was placed at the Naval airfield at Valkenburg
(MVKV) in the Netherlands, from May 29 1996 up to June 1 1997.

Meteo data for the same period (wind speed and wind direction at 10 m, temperature at 1.5 m and
precipitation) was acquired from the nearby KNMI measurement station.

To control the data-acquisition a HT basic program was been written. The program read data from the
meteo station, and processed the data into 10 minute averages of wind speed, wind direction,
turbulence, temperature and precipitation. From the averages the program determined the meteo class
(wind 0-11, turbulence 0-9, rain 0-9) and the hour of the day (0-23). Every 32 seconds two arrays with
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acoustic- and one with seismic data were read from the data acquisition board. The data was stored on
disk and in a 3D matrix a flag was set for the combination of wind class 01, turbulence class 1, and
hour class 23. If the same combination (in this example 01123) occurs again, the data is discarded.
The storage matrix is manually reset every month, during inspection of the station. The number of
files stored during the year for each wind speed and turbulence class is shown as a distribution of
wind speed and turbulence classes, in table 3.1.

Table 3.1:  The distribution of the recorded files over the chosen wind speed (WO0-W8) and turbulence (TO-T8)
categories, during the measurement period from June 1996 to July 1997.

WO |w1 |w2 |w3 |ws |ws [we (w7 (ws
To [276 f329feer [13 [+ o [0 [0 Jo
Tt |13 [239(364 [a75|195[4 [0 |o Ho
T2 |1 |46 |152 |ae1 408 |126)0 |0 o
T3 [0 |11 J40 |92 [271]230[43 |0 |0
T4 fo fo [ |17 |a3 [113les |8 o
L 'o 1 5 |4 [2t Jsa |7 Jo
6 [0 fo Jo | |2 |4 [8 |7 |
T7 Io 'o lo o Jo fo |1 Lz 1
78 10 [0 jo o fo fo Jo Jo |

Note that the number of files stored for each class is a rough indication of the probability of
occurrence of the classes during the year. For the frequency of occurrence of the wind speed and
turbulence classes, the collected meteo data has been analysed. The result of this analysis is presented
in chapter 5.

4. Propagation calculation

The FFP is used to calculate propagation attenuation from source to receiver, for a chosen geometry
and a sound speed profile corresponding to the measured classes (see paragraph 2.4). For all classes
an upwind case (wind vector pointing from receiver to source) and a downwind case (wind vector
pointing from source to receiver) was chosen. As mentioned earlier we used averaged meteorological
parameters as input for the calculation of the sound speed profile. The reason for using average
parameters is that for each class a different, and sometimes a large number of noise files was recorded
(see table 3.1). It was not feasible to calculate a sound speed profile and the corresponding '
propagation attenuation for all recorded noise files separately. Calculating propagation attenuation for
the up- or downwind case for 45 recorded classes already takes approximately 36 hours of batch
processing on a DEC 3000 Model 800 AXP!. Doing the same for all (4240) stored noise files would
take approximately half a year of processing time on our machine.

Typical FFP output for a sound speed profile c(z) calculated for meteorological conditions
corresponding to wind speed class 4 and turbulence class 3, for receiver distances of 90, 1000, 2000,
and 4000 m is shown in figure 4.1.

1 Specifications of the processor are approximately: Clock speed 200 MHz, specfp92 187.2, specfp95 4.64.
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Figure 4.1  FFP output for a sound speed profile c(z) belonging to wind class 4 and turbulence class 3 (left
downwind case, right upwind case).

Source height is 5 m, receiver height is 0.1 m, ground impedance is modelled using the Delany and
Bazley model, with effective flow resistivity ¢ = 2.5 105 mks Rayls (which is typical for grass-
covered soil).

Note that the FFP propagation model used for this project does not include the effect of turbulence
and variation of the meteorological parameters in the atmosphere on the acoustic attenuation. The
attenuation is calculated using c(z), the geometry, and the surface as the most important parameters.
Models that include turbulence are being developed however, see for example [12] and [13].

5. Results

As mentioned in paragraph 2.1 we use simulated helicopter data as input for the performance
calculations. Figure 5.1 shows the sound pressure level as a function of frequency of the simulated
helicopter signal. The sound pressure level is calculated at 90 m from the source (head on), and
nggmalised to a source level at 1 m distance from the source with a reference value of 20 pPa.
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Figure 5.1  The simulated helicopter spectrum used as input for the performance estimation, normalised to
source level at 1 m from the source with a reference value of 20 uPa.

In this procedure the assumption is made that the helicopter acts as a point source. In real situations
this is far from true. For our application where we are interested in the helicopter noise level at 1 km
or more from the source, the assumption is regarded as valid.

To show the signal degradation caused by propagation and the addition of wind noise, we show the
same helicopter spectrum as in figure 5.1, but now as if received downwind from the source at 1000
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m, with wind noise recorded for wind speed class 7 and turbulence class 7 added (figure 5.2 left). The
propagation attenuation has been calculated with FFP, using a sound speed profile estimated for the
corresponding meteorological class, as described in paragraph 2.4. Figure 5.2 (left) shows one of the
more extreme cases of signal degradation. To present another example, we show the same helicopter
spectrum as in 5.1, also propagated 1000 m downwind, but with wind noise recorded for wind speed
class 1 and turbulence class 3 added.
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Figure 5.2  The simulated helicopter spectrum, as seen at the receiver position at 1000 m from the source
{downwind), with wind noise of class 7 and turbulence class 7 added (left), and with wind noise of
class 1 and turbulence class 3 added (right).

5.1 Classification Results

The analysis of the performance of the classifiers was performed for all classes measured, as
mentioned in paragraph 4. The propagation filter (up and downwind for 1, 2 and 4 km range) was
applied to the helicopter spectrum using formula 2.2. All noise files were added for the measured
classes using the same formula, resulting in tables with classifier performance for different range, and
wind speed and turbulence combinations. To obtain clearer insight into the classifier performance as a
function of the wind speed, the classification results were averaged over the turbulence classes for
each wind speed class. The results of the template matching algorithm and the harmonic series
algorithm at source receiver distance of 1000 m are shown in figure 5.3 and 5.4 respectively. The
results at other ranges are not shown in this paper.

Temp [} 9 Algordthm
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Figure 5.3  Average results of the Template Maiching Algorithm (left downwind case, right upwind case), at
source receiver distance 1000m.
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Figure 5.3 (left) shows an unexpected decrease in performance at low wind speed. Detailed analysis
of the classification results shows that this is caused by a large sharp dip in the calculated acoustic
attenuation, near the frequency of the main rotor of the helicopter. This dip which occurs in some
cases only, and causes a biased main rotor frequency estimation, which leads to false classifications.
The magnitude and frequency of this attenuation dip depends on the chosen geometry, the chosen
ground absorption model, and its parameter values. Such sharp dips in the acoustic propagation
however are not likely to be observed during measurements, at least not as large and steady in level
and frequency for a longer period of time. One of the reasons is that atmospheric turbulence causes
variation in the propagation conditions. This effect however is not included in the FFP model, as
mentioned in chapter 4. Therefore the low performance as seen in figure 5.3 at low wind speed classes
should be interpreted as resulting from the calculation method, rather than as a realistic drop of the
performance under these conditions. We can also observe that the classifier performance drops above
wind speed 5, with a low false classification percentage at higher wind speeds.

In figure 5.3 (right) we observe a slightly lower performance at wind speed class 2 (explained earlier).
The performance decreases above wind speed 3, with a low false classification percentage at higher
wind speeds. Only in the intermediate range (wind speed class 4-6) the number of false classifications
increases.
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Figure 5.4  Average results of the Harmonic Series Algorithm (left: downwind case, right: upwind case),
source receiver distance 1000m.

From figure 5.4 we observe that for the harmonic series algorithm the performance starts to decrease
above wind speed 5, in the downwind case, with a low number of false classifications. The overall
performance is slightly higher than the performance of the template matching algorithm. From figure
5.4 we also observe that for the upwind case the performance decreases above wind speed class 3,
with a slightly higher number of false classifications than the template matching algorithm.
Important for the interpretation of the results is the probability of occurrence of the wind and ;
turbulence classes during the year of measurement. For instance the probability of occurrence of wind
speed class 7 is lower than the probability of occurrence of wind class 4. To obtain an indication of
the probability of occurrence of the wind speed classes, the relative occurrence of the wind speed
classes during the year of measurement is determined from the measured meteorological data at
MVKYV. The result is shown in figure 5.5. Note that this relative wind speed occurrence is site
specific. Data on the distribution of wind speeds over a longer period of time on different sites in the
Netherlands can be found in [14] and [15]. For example, during the period 1971-1990 the occurrence
of wind speeds larger and equal to 5 Beaufort at de Kooy was 30,3 %, and at Soesterberg it was only
4,15 %.
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Figure 5.4  Relative occurrence of wind speed classes during the year of measurement, at MVKYV as a function
of the class number which corresponds with the Beaufort scale.

5.2 Wind noise spectra

To obtain an indication of the shape of the wind noise spectrum, some recorded data files were
analysed in more detail. From the recorded signal, 32 spectra (0-512 Hz) were calculated and
averaged. The result of this analysis is shown for three wind speed classes (wind speed class 0, 4 and
8). For each of these 3 wind speed classes 3 files with increasing turbulence were analysed. The resuit

is shown in figure 5.5.
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Figure 5.5  The individual spectra, top graphs: wind speed class 0, turbulence class 0-1-2, middle graphs:
wind speed class 4, turbulence class 0-1-2, bottom graphs: wind speed class 8, turbulence class 6-
7-8. The y axis shows the sound pressure level with a reference of 20 pPa, the x axis is the

Jrequency in Hz.
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To gain insight into the increase of the level as a function of wind speed and frequency, the data was
analysed further. The spectra for wind speed 0 and 8 were averaged, and subtracted. The result is
shown in figure 5.6.
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Figure 5.6  Average wind noise spectra for wind speed 8 (Dark gray line) and O (Light gray line), and the
difference between these noise spectra (Black line) in one graph. The y axis shows the sound
pressure level with a reference of 20 yPa, the x axis is the frequency in Hz.

From figure 5.6 we see that the wind noise level increases approximately 30 dB if the wind speed
increases from wind speed class 0 to class 8. The increase in level is approximately constant in the
frequency range from 0 to 500 Hz.

6. Conclusions

The method developed to estimate the performance of two classification algorithms was applied to
measured data. The results give a useful estimation of the performance of the algorithms for a range
of meteorological conditions.

Overall both algorithms perform very well (more than 90 % of the signals classified correctly) at
source receiver distance of 1000 m, up to and including wind force 5 in the downwind situation (wind
from source to receiver), and up to and including wind force 3 for the upwind situation. In the
intermediate range of wind speeds (downwind speed class 6-7, upwind speed 4-6) the number of false
classifications increases. For higher wind speed almost all processed segments are rejected.

At high wind speed the noise level caused by wind and turbulence increases. The increase is ‘
approximately constant in level from 0 to 500 Hz. The result is that the algorithms reject the ‘
processed signal. The number of false classifications increases only slightly. The template matching
algorithm performs slightly better in this respect then the harmonic series algorithm.
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Abstract

Sound propagation models have been developed to a high degree of performance in that if
an accurate estimate of the ground impedance and sound velocity profile is used, one can expect
a good prediction of the propagated sound levels. However, the general public and govemnments
bave needs for simple answers regarding noise pollution and atmospheric conditions which are
possible is a few additional assumptions can be applied. Assuming the source is in a relatively
open area, the ground is fairly flat and homogeneous, and the weather conditions lead to a sound
velocity profile which depends mainly on height and propagation direction, a table-based sound
level prediction model is developed. Using literally hundreds of pre-computed sound
transmission loss tables for upwind, downwind, and crosswind weather conditions, and for
various ground impedances, the user can select a source signature and appropriate background
noise to determine the range contour where the source is detectable. Baseline detection is
modeled using a 1 Hz resolution spectrum and a “figure-of-merit”, or FOM curve, is used model
better or worse detection performance by ground sensors or even humans. The FOM curve
represents the noise suppression by sensor algorithms such as beamforming or the SNR
variability with frequency of the human ear. Using this approach, a rough estimate of acoustic
detectability of sound sources can be made accessible to non-scientists so long as the underlying
environmental assumptions are accurate, Some examples of the approach are presented along
with a simplified model relating the human ear to 1 Hz resolution FFT-based detection. Some
details are also given on the sound velocity profile modeling employed.

Assumptions for a Simplified Model

While computing efficiency has made impressive gains in recent years, it is still not
practical to calculate parabolic equation (PE) propagation models for every conceivable source
location and propagation direction of interest for a given environment. Furthermore, to make
such information accessible to non-scientists for a rough assessment of acoustic detectability
some choices have to be made on bounding the problem into a useful and representative set of
environments and weather conditions. The corresponding sound propagation attenuation
calculated for a range of frequencies and distances of interest is then pre-computed into tabular
form for the upwind, downwind, and crosswind propagation directions. Pre-computing of the
propagation data for a discrete number of environments allows the detectability prediction model
to run on rather modest laptop computers. However, the associated underlying assumption is that
the ground impedance is homogeneous, the ground surface is flat compared to wavelength, and
the sound velocity profile varies with altitude and propagation direction, but not from site to site
within the propagation region of interest.
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These assumptions are broad and practical, but still workable for long range propagation
detection prediction. We claim this because at ranges beyond a few hundred meters, outdoor
grasses, vegetation, and small surface roughness variations likely scatter significantly the sound
ray(s) which travel along the surface directly from a ground-based source to a ground-based
receiver. At long ranges, we expect the majority of received sound energy to either refracted or
scattered from the atmosphere to the ground-based receiver. Therefore, the variations in the
ground height are really more on an issue to source and receiver height (relative to the mean
ground height). Obviously, the rougher the ground, the weaker this assumption becomes. Our
reason for making a “flat ground” assumption is driven by practical reasons of using tables of
propagation loss for an entire region, rather than a single source and receiver location. This is
very useful for predicting detectability of moving sources. Another important bit of physics our
assumptions disregard is the affect of the varied ground on surface winds (including katabatic
and anabatic winds) and local surface-driven turbulence. Putting all these assumptions into place
(and we recognize the broad scope) we can provide a rough estimate in a simple model for non-
scientists to use to make a reasonable estimate of the detectability of various sounds in particular
environments. This is not to say that the discarded physics are unimportant - they are extremely
important for inhomogeneous environments, but rather, by making these assumptions we can
only do a good job predicting acoustic detectability in environments where our assumptions hold.
Figure 1 shows the basic process for predicting the detection range in a particular environment.

o=
i

Meaéured Propaga-tian Far-field
signature model — prediction

Background
noise

Figure 1 Basic application of the sonar equation using a tabularized propagation model result to
predict the detectability as a function of range

The detection of the far-field signature seen in Figure 1 is done using a straightforward
narrowband detection algorithm. Typically, a detection threshold is set about 6 dB above the
background noise, which for 1 Hz resolution FFT’s, works out to be 0.1% false alarm rate, or
about 1 detection false alarm every 15 minutes on 1-second sensor updates. When a narrowband
peak is at or above the detection threshold, the probability of detection is 50% or greater.
Detection modeling for the human ear will be explained later in the paper. Figure 2 shows the
general scheme for selecting the representative environments for the simplified model.
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Figure 2 Using surface-layer similarity theory [1], the temperature and wind scaling parameters, T* and
U*, respectively, help define an atmospheric state with a correspond wind and temperature profile which
are used to derive a sound velocity profile for a direction on interest

Figure 3 shows the systematic relationship between atmospheric state and sound
propagation over a 3-day lite wind period in October, 1995 at Penn State’s Rock Springs test site
which is very flat and homogeneous.
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Figure 3 A systematic relationship between surface temperature gradient and
sound propagation received level of a 54 Hz sinusoid over a 3-day period.
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Sound Velocity Profile (SVP) Modeling

The first step in modeling the SVP is to fit a model to the available temperature data.
Since the receiver and the target are on the ground, and the temperature varies significantly near
the ground, the temperature (and wind) profile over the bottom 100m is extremely important for
sound propagation modeling. Since its impractical the receiver sensors to measure the
temperature directly over the bottom 100m (typically done using meteorological sensor towers),
we use an aspect of meteorology called surface-layer similarity theory [2-5] to estimate the wind
and temperature profiles. Similarity theory is only valid for the surface layer, where the thickness
is taken as approximately twice the magnitude of the Monin-Obukov length scale L., where g in
equation (1) is the gravitational constant and T, is the absolute temperature at the surface
(measured from the bottom temperature sensor).

2
u T,

Lmo = kng. (1)

Clearly, equation (1) shows that for little temperature gradient (T. is near zero), the thickness of
the surface layer is quite large. As the gradient approaches zero we place an upper limit on the
magnitude of L, of 100m. In cases of light winds, L, approaches zero which will lead to other
scaling problems in our profile generator, so a low limit on the order of 1-2 m is assumed. Note
that direct-measured meteorological profile data from weather balloons (radiosonde), SODAR, or
RASS usually start reading data at around 100m on upward. Modeled data is available over the
internet from the Forecast Systems Laboratory (http:/www.fsl.noaa.gov/), where we use rapid
update cycle (RUC) data which is in the form of a 2-dimensional grid with a layer for every 25
mbars of barometric pressure from the ground up. The height of the layer varies at each grid
point (60 km spacing between grid points on the map) depending on the weather condition. By
sorting the data in the RUC file, one can obtain the barometric pressure, height, temperature
humidity (dew/frost point), and wind speed and direction for the nearest 3 or 4 grid points to the
receiver location of interest and interpolate to get the upper atmosphere wind and temperature
profiles needed for the SVP. However, none of this modeled or measured data is very reliable at
the surface where the receiver is located. The surface layer meteorological sensors are required
to complete the profile model data.

The temperature profile model used is given in equation (2)

v | % mo Hy s

T(2) = {;{mi - ‘l'r[ {—] * Biln—"—} + T ?)

where H,, is the thickness of the surface layer (twice the magnitude of L,,,) and the temperature is
in degrees Kelvin. The first two terms in equation (2) are straight out of similarity theory while
the third term we have added as part of a least-squares fit to match the upper level data to the
surface layer. In similarity theory, the temperature profile is for potential temperature (removing
the adiabatic lapse rate of about -1 degree Kelvin per 100m increase in altitude). Since we are
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doing a least squared error model fit, the adiabatic decrease in temperature with height is
assumed part of our temperature profile model. The mixing function ¥y (z/L,,,) depends on the
L,,, length scale [4,5] and is fairly complicated as seen in equation (3). The profile of the
temperature is governed by the mixing function only in the surface layer, which is why we chose
a “z Inz” structure to our least-squares fit function for the upper atmosphere data. Note that “z
Inz” tends to be zero near the ground.

Figure 4 shows a typical daytime profile model result. The sharp negative temperature gradient
near the ground is physically the result of solar heating and the result of similarity theory in the
first two terms of the profile model in equation (2). The smooth transition from the surface layer
to the least-squares fit on the upper atmosphere is both physical and desirable because any
artificial fluctuation of the profile will result in erroneous sound scattering in the sound
propagation model. The surface layer transition is important to accurate sound propagation
modeling when both target source and receiver are on the ground.

\ l+.\l-l6-Li-
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Lmn) 'mo

The wind profile is split into “u” and “v” components for the “cast-west” and “north-
south” components of the wind, respectively (w is typically used for the vertical wind
component). We note that compass bearings 6, differ from trigonometric bearings 6, by 6, = 90 -
8.. We also note that convention has winds coming out of the North as having a bearing of 0
degrees, while the velocity direction is actually along the negative y-axis, or -90 degrees using a
trigonometry polar system. Therefore, the trigonometric velocity angle 8, for a wind direction 6,
is 6, = -90 - 0,. The wind profile along the “east-west” direction is given in equation (4) and along
the “north-south” direction in equation (5). This separation of the u and v wind components
allows for twisting wind profiles, which are quite common. In particular, during the night
“drainage winds” of cold air flowing down to the bottom of valleys (katabatic winds) can have
the opposite direction of winds several hundred meters aloft.

= 2 cos(E[-90 - e A R -
W = g, w0 °‘D{hzo W“(L ] o H,,lan:} ®

mo



53

1000
900 |
800
700
600 |

500

Atz

400
300
200

100

) 294 296 298 300 302 304
Deg K
Figure 4 Daytime temperature profile using least-squares fit for upper

atmosphere data and similarity theory for surface layer temperatures.
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The mixing functions for the wind are given in equation (6).
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The mixing functions in equations (3) and (6) are found by empirical fitting measured
data to the dimension-less model equations provided by similarity theory. This approach is based
on a technique known as Buckingham-pi theory, where a complex set of differential equations is
reduced by deriving a number of independent dimension less equations (pi variables) equal to the
number of independent dimensions (physical units) governed by the differential equations. Much
of boundary-layer meteorology is rooted in Buckingham-pi theory and is well accepted in the
scientific community. Figure 5 shows a twisting wind profile typical of the environment
spanning the surface to elevations of several hundred meters.
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Figure 5 Twisting wind profile can be seen when the terrain is not flat allowing katabatic
winds “draining” from hillsides to shift the surface wind direction

The SVP is found by combining the wind and temperature profiles. The speed of sound
in the atmosphere is well known to be dependent upon temperature as

¢=afm ™

where ¢, is 331.6 m/s (the speed of sound in air at 0 degrees C) and T is absolute temperature in
degrees Kelvin. The wind velocity components simply add to the sound speed velocity, making
the SVP a function of propagation direction 6, and height. Equation (8) gives the SVP fora
compass propagation direction 6, (sound propagating to the southeast will have a compass
heading of 135 degrees and a trigonometric angle of 90 - 6, = -45 degrees).

c(20,) = coy| T2 + u,(2)cos(190-8,]) + u,()sin(5;(90-6,D ®)
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Propagation and Detection Models

Once we have a reasonable estimate for the SVP, a Green’s function PE model [6] is used
to calculate the total (spreading plus excess attenuation) propagation loss from source to receiver
in the upwind, downwind, and crosswind directions. We have streamlined this processing
intensive task into a C++ Windows application to efficiently generate propagation tables. For
example, on a Pentium IT 266 MHz processor, 8192 point FFT’s (0.5m vertical sampling) are
used in 20 range steps out to 6 km for 50, 100, 150, 200, and 150 Hz in the upwind, downwind,
and crosswind directions to compute a complete set of tables in under 5 minutes time.

=

Figure 6 The GFPE propagation model showing the sound speed profiles and
transmission loss curves for 5 frequencies in the upwind, downwind, and
cross wind directions

Figure 7 shows what the user sees in the simplified acoustic detection model for a typical
commercial truck and 3 different receiving positions. The contours represent a 50% probability
of detection for the largest propagated peak of the truck signature. If the truck is located
anywhere inside the contour, a 1 Hz resolution FFT of a single microphone should be able to
easily detect it. A beamforming sensor array would obviously be able to detect the truck at a
much farther distance. We use a FOM curve to objectively represent the SNR improvement from
an array’s directivity index as well as other signal processing enhancements to improve
performance. Figure 8 shows the FOM curve for an 8 element 2m circular array. The FOM
curve is negative (on a dB scale) when the noise is suppressed relative to a single microphone
with a 1 Hz resolution FFT.
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Figure 7 The detection footprints at 3 receiver locations for the noise from a
cargo truck with moderate winds out of the East.
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from BASIS-SCM

56



57
Some Validation Results

During a sound propagation experiment in the desert near Yuma, AZ in late July 1997,
the environmental sensors and detection performance modeling were employed. To fully observe
the effect of the environment on sound propagation and acoustic detection, testing was done at all
hours over a five day period. Acoustic calibration of the test range is done using a calibrated
loudspeaker source playing 50, 100, 150, 200, and 250 Hz at a level of 115 dB at 1m. About
once per hour these acoustic calibrations are broadcast from a single location and recorded by
multiple remote unattended ground sensor (UGS) nodes, also equipped with surface
meteorological sensors. The UGS meteorological data was augmented by several 10m towers,
and SODAR system for measuring boundary layer winds, and radiosonde weather balloons. A
RASS (Radio-Acoustic Sounding System) was also on site, but did not provide useful data due to
the extremely dry conditions.

The meteorological data gathered in the field during the acoustic calibrations is used to
estimate the SVP in the upwind, downwind, and cross wind directions, and PE models are run for
the 50, 100, 150, 200, and 250 Hz calibration tones. The PE sound level predictions for the
calibration tones are then compared to the available acoustic spectral measurements from the
UGS nodes around the range. A good match indicates that the propagation model is valid and
can be used to accurately predict detection ranges for the various UGS sensors. Figures 9 and 10
show the PE predicted and measured calibration tone results for an UGS node 3.85 km from the
loudspeaker during the hot windy afternoon and at around midnight. The “*” symbols merely
highlight the spectrum at the frequency bins where the tones should be. The “0” symbols and
error bars are the PE predictions. The wind background noise and upward refraction typical ofa
hot desert afternoon clearly show poor detection performance in Figure 9. The same calibration
tone levels, at the same UGS node on the same day are seen for midnight in Figure 10. Clearly,
the reduced wind noise and downward refraction greatly enhance UGS acoustic detection
performance at night. In fact, acoustic UGS work so much better at night, and especially during
the pre-dawn hours, that they should be referred to as nocturnal sensors. -
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Figure 9 Loudspeaker calibration during a hot Figure 10 Loudspeaker calibration at midnight
afternoon
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Human Detection of Narrowband Tomes

Of primary interest to civilian and government needs for acoustic predictions outdoors is
the detection perforrnance of humans. This of course leads to community noise complaints, legal
actions between people and businesses, and so on. We have just established an objective
approach to systematically make predictions for narrowband frequencies measured by
microphones and processed by computer. For human detection, we have to cross over into the
subjective discipline of audiology [7]. There are at least three relevant facts about all human
hearing which, as physicists, we can embrace to develop a FOM model to relate human hearing
to our signal processing model. The first is that the frequency response of human hearing is
loudness-dependent. For sounds louder than about 85 dB, the human ear has a relatively flat
frequency response, or C-weighting response. For sounds quieter than about 55 dB, the ear’s
sensitivity is concentrated in the speech range from 500 Hz to around 3 kHz, or an A-weighting.
In between sound levels of 55 and 85 dB there is actually a B-weighting curve which is used by
audiologists. Figure 11 shows the A, B, and C weighting curves in dB relative to 1 kHz.

dB Adjustments for A, B, and C Weightings
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Figure 11 A, B, and C, weighting curves for modeling the human
ear's relative frequency response to sound at various levels of
loudness

Second, we know the ear responds neurologically in the range of 25 msec to as long as
150 msec, indicating the integration time is in the 200 msec range. This corresponds to an
equivalent frequency resolution of about 5 Hz. We also know that the lowest frequency to be
perceived by most humans as a sound (rather than vibration) is in the 20 Hz range, and that beat
frequencies faster than about 10-20 beats per second will be perceived as an inter-modulation
tone rather than amplitude modulation of a sinusoid. While highly subjective, it is plausible to
say that the ear’s detection capability (SNR enhancement) is roughly equivalent to a 5 Hz
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resolution FFT at low frequencies, and perhaps has less resolution at higher frequencies (faster
integration times). There is one more observable from audiology which supports the 5 Hz low
frequency resolution hypothesis. It has been reported that at low frequencies, the ear’s critical
bandwidth is approximately a 1/3 octave band. The critical bandwidth is the narrowest
bandwidth of noise which will mask a narrowband sinusoid with the same total power. The
bandwidth of a 1/3 octave filter is about 23% of the center frequency, or 5 Hz at 20 Hz center
frequency, 23 Hz at 100 Hz center frequency, and so on. The FOM for the human ear at low
frequencies is seen to be around +7 dB (7 dB worse SNR enhancement than a 1 Hz resolution
FFT) at best, and the SNR enhancement worsens as one goes to higher frequencies. However,
for low intensity sounds, the ear’s sensitivity increases remarkably as one approaches the 1-3 kHz
range.

Third, a quantity called the minimum audible field, or MAF, represents the minimum
sound pressure levels the best human ears can detect. Its about 43 dB at 100 Hz, 15 dB at 200
Hz, 4-5 dB in the 1-2 kHz range, -5 dB at 4 kHz, and 13.5 dB at 8 kHz [7]. The astonishing
sensitivity at 4 kHz is due to the part of the cochlea closest to the oval window in the inner ear.
The MAF represents an “internal background noise” of the human ear. In extremely quiet
environments, the biological noise internal to our bodies, along with neurological noise such as
tinnitus (ringing of the ears) will prevent detection of sound.

Putting the human detection model together still requires further research, but it can be
included in out acoustic detection model as follows. 1) the source signature predicted at some
range of interest is evaluated for an overall sound pressure level, SPL; 2) the signature is
weighted by either A, B, or C-weighting curves depending on the overall SPL. 3) the weighted
background noise is added to the “internal noise” of the MAF to produce the modeled noise
presented to the ear; 4) the FOM for ear is used to adjust the signature (A, B, or C weighted)
SNR prior to a detection calculation in the model. For low level, low frequency sounds, the
effect of A-weighting will diminish the signal and noise substantially, perhaps so much that the
MAF masks the signal from being detected. But at higher frequencies this is much less ofa
problem. A-weighting at say 1 Hz leaves the sound relatively unscathed while at the same time
the MAF is extremely small. This explains why human hearing is so acute in the speech range.
But, the is also the current state of our work on outdoor sound detection modeling.

Conclusions

We have shown a simplified acoustic detection model for use in outdoor sound
propagation source level predictions of narrowband sinusoids in environmental noise. The
simplifications are done to allow a large number of pre-computed sound propagation attenuation
tables to be employed for modeling the sound attenuation efficiently. This is done fora
representative set of environments assuming a “flat ground” terrain and temperature and wind
profiles which vary vertically only. This allows a detection contour derived from upwind,
downwind, and crosswind detection ranges to be applied anywhere in the region. However, the
underlying assumptions restrict this application to relatively flat open areas. We have also
presented some preliminary work towards a human detection capability to be added to the model
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in the future. The human detectability problem requires that physical aspects of the ear be cast
into signal processing parameters which allow the ear model to be integrated into the acoustic
detection model. We have found very good model performance results in relatively low wind
homogeneous environments. However, much more validation work is anticipated.

o
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ABSTRACT

Moving vehicles generate both acoustic and seismic signals. The seismic signal received on a
geophone can contain some energy that has propagated as seismic waves and some energy that
couples from acoustic waves to seismic waves at the geophone. In the frequency domain, the
coherence between the microphone and geophone signal can be used to determine if the seismic
signal is predominantly due to acoustic wave coupling. If the latter predominates the ratio of the
seismic ground particle velocity to sound pressure can be determined, giving the frame strength
of the ground. The method is applied to data from both summer and snow covered winter ground.
For the winter data a 15 meter array of 10 microphones is used to look at the spatial coherence of
the sound. Results can be applied to removing the sound generated portion of the seismic signal.

Introduction

It is well established that sound waves move the earth and create signals on a geophone. The
coupling of sound to geophones has been studied using speakers as sources (e.g. Sabatier et al,
1986) and using pistol shots (Albert and Orcutt, 1989). The measurement normally made is the
ratio of the seismic ground velocity ( the quantity measured by a geophone) divided by sound
pressure. We denote this quantity by SAR. This SAR has been used with other measurements to
get properties of the ground (e.g. Sprague et al, 1993). It is also important to measure and
understand this coupling if full use is to be made of seismic signals in monitoring activities.

In the present work we investigate the posibility of determing SAR using the signals that are
generated by moving vehicles. From a source such as a moving vehicle signal reaches a geophone
in several ways. Energy is put into seismic waves directly by the vehicle tread. Next energy can
couple from sound waves into seismic waves near the vehicle, then travel to geophone as seismic
waves. Finally energy propagates as sound waves and couples to ground motion near the
geophone. Thus the use of a moving vehicle rather than a speaker or pistol source may require
care in data reduction.

This work attempts to determine which part of the total seismic signal has propagated as sound
waves. To do this we look at the coincidence of spectral peaks in the micraphone and geophone
signals, and at the coherence (coherence function) between the micraphone and geophone signals.
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Method

Data Sources

Data will be discussed from two field experiments. The first, called the Alaska data, uses data
taken at the Texas Range test site in Ft. Greely, AK. The data was taken 1/27/98 during a day
with low wind, and air temperatures below ~17° C. The site is characterized by deep glacial tills.
The ground was frozen and snow cover was between 15 and 60 cm deep. The area is largely
open with only short (<1 m) scruby vegetation. Geophones were mounted on spikes and forced
into the ground. The microphones were mounded on stands 1 m above the snow surface. Data
was take with a 10 element microphone array and, a 12 element, three component geophone
array. The data analyzed is from a microphone separated by 3 m from a vertical geophone. The
seismic sensors were Mark Products 4.5-Hz geophones and the microphones were Bruel & Kjaer
4165 all-weather capacitance microphones with windscreens. Custom amplifiers were used to
remove the DC offset from the microphone signals. Figure 1 shows Alaska data.
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-123.2 Ll AN
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W
-14.8 | ) !
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Time (sec)

Figure 1. Sample Data from Alaska. Source distance is 330 m.

The second data set to be discussed was taken at Aberdeen, MD. Data was ta.ken in a large open
field, with grass cover, throughout the evening of 10/28/98. . Topographic relief between source



and sensor locations is less than 1 m. Air temperatures were approximately 60° and average wind
speeds over the course of the recording period were less than 1 m/s. A shallow hole, roughly the
height of the geophone, was stamped in the ground and the spiked geophones pushed into the
hole. The microphone and vertical geophone used for the coherence measurement were separated
by approximately 9 m.

Calculation methods

The coherence is a measure of the similarity of the seismic and acoustic signal. The geophone
signal may be thought of as composed of energy that propagates through the earth and is
uncorrelated with the sound signal, Gu and a part that is generated by the sound to ground motion
coupling, Gc, as shown in Figure 2. The sound picked up by the microphone is composed of that
couples into the ground, Mc, and other sound, for example wind noise, that does not couple to the
ground, Mu. The total microphone signal is then the correlated and the uncorrelated parts, Mc +
Mu, while the total geophone signal is Gc + Gu. The coherence is defined as

C= (PMG )2 - (PMCPGC)
(PM.MXPGG) (PGU+PGCXPMU+PMC)
where

0y

P,,, = microphone power spectra
P, = microphone -geophone cross power spectra
P,,. = coherent part of the microphone power spectra

and analogous definitions hold for the other variables.

Geophone Gy

noise
uncorelated l G +G
Sound to u
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—> Mic.
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Figure 2. Diagram of signal formation.
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If the block averaging method is used to measure the coherence, the coherence may be thought of
as a measure of how constant the phase difference between microphone and geophone signals is
from block to block. Thus the coherence is a measure of how much of the energy is common to
both traces, as given by equation (1).

The power spectral density calculations were made using the Matlab routine PSD. The coherence
measurement were made using the Matlab routine COHERE For the Aberdeen data 5 seconds of
data were used, a 1.024 s data blocks gives about 1 Hz. resolution. A 1 s window was used, with
50% overlap between blocks. This give approximately 5 degrees of freedom in the measurement.
For Alaska data a 2 second data section was used, with a .48 s data block, with 50% block
overlap, giving approximately 4 degrees of freedom.

Results

Figure 3A shows PSD (the Power Spectral Density) for Aberdeen data. The source was a
common main battle tank, with a velocity of 35 km/h at a distance of approximately 300 m. The
top two traces have been normalized to bring out the coincidence of the spectral peaks of the
microphone and geophone traces in the frequency range of 60 to 150 Hz. The spectral peaks in
the signals are believed to be the engine noise spectral peaks normally seen in tank acoustic noise
(e.8. Wellman, 1996). The coherence between the two traces, shown in Figure 3B, indicates that
the two signals are highly coherent between 80 and 150 Hz, and have low coherence outside of
that band. Figure 4 shows the true PSD for the two sensor signals. The difference in signal level
of the microphone minus the geophone ( dB rel to 1 [(m/s)/Pa] ). Is shown in the lower panel.
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Figure 3. A. PSD For mic and geophone. B. Coherence. File 84, Aberdeen.
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Figure 4. PSD for mic, PSD for geophone, and PSD (mic — geophone) vs frequency. File 84
Aberdeen.

The results for this data section are similar for the whole record. When the source was
approximately 700 m from the sensors, the coherence was still high over the 80 to 150 Hz band.
The SAR for several different portions of data are shown in Figure 5. Figures 5 A, C, and D are
for the same run at different portions of the record. Figure 5B is for the same vehicle run but uses
a different geophone, also at a distance of 9 m from the microphone. In all cases the SAR’s are
similar. There is a peak centered at about 55 Hz which is common to all. This corresponds to a
peak in the seismic spectra, indicating that this peak is due to energy that propagated from the
source as seismic energy, and not a place where the seismic to acoustic coupling became large.
The SAR is about 3x10” (m/s)/Pa at 70 Hz. Rising to about 10x10°® (m/s)/Pa at 150 Hz.
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Figure 5. Seismic/Acoustic ratio for 5 samples. A, B, C, and D are for tank
with reciprocating engine. E is for a tank with a turbine engine. B uses a
different seismic channel than other ratios.
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The Alaska data use the same type of main battle tank as the marority of the Aberdeen data. In
this data the vehicle is at distance of 330 m. The microphone PSD, coherence, and SAR are
shown in Figure 6. The coherence are generally high from 100 to 200 Hz, however there are
dips in coherence where the microphone PSD is low. This illustrated by the right-most vertical
line on the figure, where the microphone PSD is high the coherence is high. Note that at the
frequencies where the coherence is relatively low the SAR is high. This indicates that there is
significant seismic energy on the geophone that is not coherent with the microphone signal.
However at frequencies where the microphone signal is high the major portion of the geophone
power is from acoustic coupling. Thus by following the lower portion of the SAR curve a
reliable estimate of the SAR is obtained. The SAR are around 1.3x10° [(m/s)/Pa] at 120 Hz.
Rising to about 2x10° [(m/s)/Pa] at 180 Hz.
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Figure 6. A. PSD for mic. B. Coherence between mic and geophone. C.
SAR. For Alaska, File 42. Vertical lines show frequency alignment for a peak
and for a trough of the three time series.

Finally the average inter element coherence of the 10 element microphone array is shown in
Figure 7. This was formed by averaging at each frequency, the 45 combinations of microphones
taken two at a time. The diameter of the array was approximately 15 m. The microphones are
generally coherent from 150 to 350 Hz. In addition there are high coherence peaks from 50 t0 80
Hz.
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Figure 7. Average coherence versus frequency. Average of 45
combinations. Error limit curves are above and below the
coherence curve.
Discussion

The SAR values found for Aberdeen were consistent with the 6x10°to 10x10° [(m/s)/Pa] given
in the literature (e.g. Albert and Orcutt, 1989; Sabatier et at, 1986). The SAR values are roughly
a factor of 2 to 4 lower for Alaska than for Aberdeen. Rayleigh wave velocity at Aberdeen was
on the order of 250 m/s. Array processing of seismic data showed P wave velocities of 1500 m/s
for Rayleigh surface waves, and up to 4,000 m/s for signals thought to be P-waves. These are
consistent with permafrost. Figure 8 shows a plot of the theoretical SAR versus Vs (shear wave
velocity) for a plain wave in air incident on a Poisson solid. Calculations were done with the
solution in Ewing, Jardetsky, and Press (1957, p79). Calculations were for an air velocity of 340
m/s. Note the general decrease of SAR with Vs. This trend is consistent with the low SAR for
the Alaska data. The peak in calculated SAR around 370 m/s is due to the air coupled Rayleigh
wave phenomenon  ( Press et al, 1955). Even though the measurements of SAR only go up to
200 Hz using more complex models for the earth incorporating layering and poroelastic material
(e.g. Albert, 1993; Attenborough, 1985) would give a better fit to the observed SAR curve.
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Figure 8. SAR for a wave in air incident on an elastic halfspace vs frequency.
Poisson solid. Density of solid 2000 kg/m® .



Conclusions

Microphone and geophone signals were observed to be coherent at frequencies of approximately 60 to 150
Hz at a grass covered site, at 100 to 200 Hz at a frozen snow covered site. Evidence was presented that use
of passive signals from vehicles can be used to estimate the SAR. The use of coherence is useful in
determining what part of the seismic signal is energy that has propagated as seismic wave, and what part is
due to sound to ground motion coupling. It is possible that prediction error filtering may be useful in
removing the sound to seismic coupled noise on the geophone (Albert, 1984). A through investigation of
the SAR values from a variety of settings may lead to methods for estimating the acoustic ground
impeadance and the near surface stiffness of the earth’s surface. These are important parameters in
autonomous remote monitoring systems.
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Review of Models for Ground Effects over Level Terrain
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0. Introduction

The last few years have seen the development and use of several means of characterizing
the ground when predicting outdoor sound propagation. In this paper we review some of
these developments and discuss them in the light of recent data. In the first section
several surface impedance models are introduced. Impedance models are compared with
data in section 2. A method of deducing surface impedance from short-range complex
excess attenuation measurements is described in section 3. Progress in modelling
roughness effects is reported in section 4. Evidence of ground roughness effects are
reported in section 5. Finally some concluding remarks are offered.

1. Ground Impedance models
A widely-used, semi-empirical single-parameter model, due to Delany and Bazley, for
propagation constant and relative normal surface impedance [1,2] suggests that

k= {w/c, J1+0.0978X *™ +i0.189X ] - (1)

Z. =1+0.0571X ™™ +i0.087X ™, )

where X =p f/R, =fIR.g R.rbeing an effective flow resistivity.
Rasmussen [3] found it possible to improve agreement with short range propagation data
over grass-covered surfaces by assuming a hard-backed layer structure and by using
equations (1) and (2) with the formula for the impedance of a hard-backed layer of
thickness d,

Z(d)= Z, coth(-ikd) . 3)
Hamet and Berengier [4] have used a modified form of the phenomenological model
published by Morse and Ingard [5] to predict the acoustical properties of porous asphalt.
Their model may be written

S

F,=1-0,[0 F,=1-0,/0 , 0y = (RJ/p)(SYK), oy = ,(KINpr). @)
where NpR is the Prandtl number for air and ko = aV/cy.

The acoustical properties of the ground may be modelled as those of a rigid-porous
material and characterized by a complex density, containing the influence of viscous
effects, and a complex compressibility, containing the influence of thermal effects.
Thermal effects are much greater in air-filled materials than in water-filled materials.
The precise forms of these quantities may be obtained by considering a microstructure of
narrow pores or tubes. This offers a more rigorous basis for ground impedance
prediction than phenomenological [5] or semi-empirical [2] approaches.

According to Stinson [6], if the complex density in a uniform pore of arbitrary shape, is
written as

p(@) = pyyH(A) ©)
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where A is a dimensionless parameter, then the complex compressibility is given by
Cle) = () '[7 - - DHON(VpR)] ©)

Where (yP())'1 = (poco?)”! is the adiabatic compressibility of air.

H(A) has been calculated for many ideal pore shapes [6-9] including circular capillary,

infinite parallel sided slit, equilateral triangle and rectangle.

The dimensionless parameter A may be related to the (steady) flow resistivity (Ry) of the
2uq%s,

bulk material through use of the Kozeny-Carman formula [10], Ry = o where the
Th

hydraulic radius, r, = 'wettedarea , s, is a steady flow shape factor and q2 is tortuosity,
perimeter

defined as the square of the increase in path length per unit thickness of material due to
deviations of the steady-flow path from a straight line.
The bulk propagation constant (k(@)) and relative characteristic impedance (Z.(®)) of the

bulk porous material may be calculated from!

k(@) = ol(@®)p(@)C(oN0> ™

Z (o) = (prp~l(@H2P)p(e) C(@)10> ®)
There are various published methods that allow for arbitrarily-shaped pores.

Attenborough [11] scales the complex density function directly between pore shapes and
introduces an adjustable dynamic pore shape parameter (s,). For example, the bulk

complex density function for arbitrarily-shaped pores is given by [9]
() = (g2Dpol1 — tanh(I-)(A-)1~]
®

where
2\
A= s,|3P
Al oR,
s = 1 for slit-like pores and 0.745 < s < 1 for pore shapes varying between equilateral
triangles and slits. If circular cylindrical pore shapes are used as the basis, then the
dimensionless parameter may be written
2 \E
A = SA[ 8p,00 ] _
QR
This formulation retains explicit dependence on s, even in the low frequency limit.
Champoux and Stinson [7] have pointed out that to satisfy the correct limiting behaviour
for the complex density , in particular that —iwpp — R as @ tends to zero, this method

requires requires s, to be frequency-dependent.

Their method of allowing for arbitrary pore shape is closer to that originally suggested by
Biot [12] and the resulting pore shape parameter (sg) has the advantage of being
frequency-independent. Using this approach, with reference to the functions for slit-like
pores, we write the complex density for the bulk material as

!Equation (3.8) implies that the bulk compressibility Cp() = 2 C(w)
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’ iRy
PoA) = (q77Dpg + 7 F(A) (10)

1 (V=) anh@ay=i ‘
Fsh =3 [1-(tanh(l)J-_i)/(/1\/-_)i)] an
A =SB(—3p°an: ]’g
QR
and 1 < sg < 1.342 for pore shapes varying from slits to equilateral triangles. This
approach scales the viscosity correction or dynamic viscosity function F(A) instead of the
complex density function. Since F(A) tends to unity in the low frequency limit this
method of defining pp(A) does not have any explicit dependence on a dynamic pore

shape factor. In the low frequency limit, the dependence on pore shape is only that
implicit in the flow resistivity.

For a given bulk flow resistivity, porosity and tortuosity, the complex density and
complex compressibility, calculated from (5) and (6) are found to depend on pore shape.
However the complex bulk propagation constant, complex characteristic impedance and
corresponding surface impedance of a hard-backed layer, are predicted to be relatively
insensitive to pore shape [9]. This is true particularly for low flow resistivities and
frequencies less than a few thousand Hz.

Other microstructural factors of significance in pore-based modeling are the variation of
pore cross-sections along their lengths and the associated distributions of pore sizes and
shapes. To allow simultaneously for arbitrary pore shapes and for pore cross-sections
that change along their lengths, Johnson et al [13] interpret 1/H(A) as a dynamic
tortuosity and introduce two characteristic lengths. In effect, the characteristic lengths
introduce two ‘dynamic’ pore shape factors s, (equivalent to sp) and sc into complex
density and complex compressibility respectively. The need for two shape factors may
be argued from the fact that the wider parts of each pore tend to be more important for the
complex compressibility while the narrower pore cross-sections dominate the complex
density. This formulation has been adopted by Allard et al. [8].

A method of allowing for a log-normal pore size distribution, while assuming pores of
identical (slit-like) shape has been developed by Attenborough [9] based on the work of
Yamamoto and Turgut [14].

Several authors have considered the surface impedance of a high flow resistivity rigid
porous medium in which the porosity decreases exponentially with depth [15-18]. The .
most rigorous approximation for a high flow resistivity surface [16] is

1+ R, icoa, (12)’

Z=—nti T
s e
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wherea, = (n’ +2)a/Q, where n' is a grain shape factor such that the tortuosity is given by
Q™.
This implies that X > R (as long as a, is positive), and may be written generically in the

form
R iba
Z=a(l+i) | +—= 1
a(+l)1/ F + 7 (13),

where a=1/,[np,y and b=c,/8xy. For a non-hard backed thin layer, o, = 4/d, .
An approximation for the surface impedance of a high flow resistivity porous medium
with the porosity increasing exponentially with depth is given by (3.32) with negative .

If a, is negative then (3.32) predicts a resistance that exceeds the reactance at all

frequencies.
An improved approximation at high frequencies may be written either [19]

ic,&.
Z=27 +—2-

¢ W
b e Bz PPy [ LGS
"Jn?(”‘)\,—;*’\/:(‘ ')r'\/;‘”w 7
or z=ﬁ(1+i}JR7-:+J%(1-i)r,J%+;—c;-ﬁf'- (15)

where R’ =f—é. Note that R, and R’ are identical if s, = 0.5.

(14)

These introduce a third parameter T, = 7/€2* which depends on the tortuosity and porosity
and influences the high frequency values of the impedance.

By viewing the viscous and thermal diffusion in porous materials as a relaxation process,
Wilson [20 — 22] has obtained models for the acoustical properties of porous materials in
simple forms that, nevertheless, enable accurate predictions over wide frequency ranges.
His results may be expressed as

-4
Z=£[(1+ r-t Il-—l———ﬂ (16)

Q

- A
k=“"/F [1+ r-! [1-——-‘_ ]} (17
A

Co

where, for identical uniform pores, % and 7, the thermodynamic and aerodynamic
characteristic times respectively, are given by

7, =2p,T/QR, (18)
and 1,=N,s,'t, (19).
Essentially this represents a single parameter model for a given pore shape, flow
resistivity and porosity.
For materials in which the pore cross sections vary, Wilson has suggested a slightly more

complicated form, in which |i-iwr, andfi-ior, are replaced by \F +-:L(,}1-imr, [, -1)
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where 7; and 7; are appropriate low- and high-frequency versions of 7. and 7,. He has
shown that results equivalent to the Johnson/Allard model may be obtained with

7, =7, =N,s,’t, and 7, =s,’t, =2p,T/QR, . In its most general form this represents a
four- or five- parameter model.

3. Comparisons with impedance and short range propagation data

300 - NORMALIZED IMPEDANCE

100 110 11
FREQUENCY Hz
Figure 1 Impedance of compacted soil measured by Cramond and Don [3.65] and predictions using
equation (2) with effective flow resistivity 450 kPa s m’2 (broken lines), equations (8) and (9), and equation
(16)) (solid lines) with flow resistivity 200 kPa s m?, porosity 0.4 and tortuosity 1.5.

100 118 1208

FREQUENCY Hz

Figure 2 Impedance of loosened soil (0.02 m thick) above compacted soil measured by Cfamond and Don
[37) and predictions using equation (2) with effective flow resistivity 450 kPa s m™ (broken lines),
equations (3), (8) and (11) (solid lines), with upper layer flow resistiviq 50 kPa s m?, porosity 0.4,
tortuosity 1.5 and thickness 0.02 m; substrate flow resistivity 800 kPa s m™, porosity 0.2 and tortuosity 3
and equation (12) (dotted lines) in which R, = 31.2 kPas m™ and & = 200 m™",



Example results of the pulse method used by Cramond and Don are shown in Figures 1
and 2 together with predictions obtained from the semi-empirical model due to Delany
and Bazley (equations (2)), and pore-based models (equations (3), (5), (6), (8) and (16)-
(19)). The data are for compacted earth and the same soil with the top 0.02 m loosened.
There are significant differences between the measured impedances of compacted and
Joose soil. Although it is possible to obtain reasonable fits with the semi-empirical model
in both cases, improved agreement is possible with models based on an assumed slit-pore

microstructure. ‘
The dotted lines represent predictions of the relaxation model with s, = 1. The dashed
lines represent predictions of the Hamet-Berengier phenomenological model and the
dash-dot lines represent predictions of the Delany-Bazley model with effective flow
resistivity given by the product of measured flow resistivity and porosity.

Figure 3 Shows impedance data for a hard-backed sample of snow obtained in an
impedance tube by Buser [36]. The measured flow resistivity and bulk density of this
sample were 9.6 kPa s m and 208 km m™> respectively. Assuming an ice density of 913
kg m™, the latter value corresponds to a porosity of 0.774. The continuous lines in
Figure 3 Correspond to predictions of an identical slit-pore model with tortuosity equal to

inverse porosity.

NORMALIZED IMPEDANCE

100 o0} re10t

FREQUENCY Hz
Figure 3 Measured and predicted impedance of 2 0.05 m thick layer of snow with measured flow resistivity
9.6 kPa s m™> and porosity 0.774 [36]. Predictions use identical slit pore model with measured flow
resistivity and porosity and tortuosity = 1/porosity (solid lines), Hamet-Berengier (dashed), Wilson-

relaxation (dotted) and Delany-Bazley (dash-dot) with Re = Rs.

The predictions of the relaxation model can be improved by adjusting the value of s (1.4
gives better agreement with data). However it should be noted that this removes one of
its advantages as a simple model. Moreover the slit-pore predictions are obtained without
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any adjustment apart from the assumption that tortuosity is given by the inverse of
porosity. It is noticeable that the Delany-Bazley model gives relatively poor predictions
for these data.

Figure 4 shows measurements [23] and predictions of the spectrum of the level difference
between vertically-separated microphones 1 m from a point source over a dry flat silt soil
(at Pendleton, Oregon).

20

LEVEL DIFFERENCE dB

20

100 1e10° 1e10?
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e slit pores

= = Wilson

== == Delany/Bazley

eese Hamet
== 2 para.

Figure 4 The spectrum of the difference in levels between two microphones at 0.288m and 0.0385m due to
a point source at 0.3285m height and separated by a horizontal distance of 1 m overa dry flat silt soil and
predictions of the various impedance models cited in the legend.

4. Impedance measurement by excess attenuation fitting

A method of deducing impedance from excess attenuation or level difference
spectra has been proposed based on two-dimensional minimization of the difference
between data and theory at each frequency [24]. The first step is to calculate the
spherical reflection coefficient (Q) from measured excess attenuation spectra at short
ranges. The next step is to search for a theoretical value of the impedance that best fits
the measured Q at each frequency point. This requires considerable computation and is
rather inefficient. An alternative numerical method uses root-finding [25] and takes
advantage of the fact that the classical approximation to the spherical wave reflection
coefficient is an analytic function of the impedance. The resulting saving in computation
time can be up to a hundred-fold without any loss in accuracy. Figures 5 and 6 show
examples of impedances obtained in this way from (complex) excess attenuation data
over two different grass covered surfaces and over a mixed woodland floor with and
without leaf litter.
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Figure 5 Impedances deduced by root-finding from (complex) excess attenuation measurements using
short-range geometries over farm grassland (solid lines) and a carefully-maintained cricket field (broken

lines).
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Figure 6 Impedances of a mixed woodland floor deduced from (complex) excess attenuation measured at
short range (1 m) with source and microphone heights 0.1 m with (solid lines) and without (broken lines)

the litter layer.
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5. Models for effects of surface roughness

As well as being porous many outdoor surfaces are rough. Surface roughness
scatters the sound coherently and incoherently. The relative strengths of the coherent and
incoherent parts of the scattered energy depend on the mean size of the roughness. On
disked soil, the roughness is small compared to the wavelengths of sound for the
frequency range of interest (100 Hz — 2000 Hz). Such roughness may be described as
small-scale and gives rise to mainly coherent scattering. The impedance or admittance of
the boundary is modified by the presence of small-scale roughness. This can be
considered to have an influence on the (spherical-wave) reflection coefficient and hence
the ground effect [26]. However once the roughness size approaches the wavelengths of
interest, incoherent scattering dominates and ground effect is reduced.

Twersky has developed a boss model [27-31] to describe coherent reflection from
a hard surface containing semi-cylindrical roughnesses in which the contributions of the
scatterers are summed to obtained the total scattered field. Sparse and closely-packed
distributions of bosses have been considered and interaction between neighbor scatterers
has been included. His results lead to a real part of the effective admittance of the rough
hard surface which may be attributed to incoherent scattering. Consider a plane wave
incident on an array of semi-cylinders of radius @ and mean center-to-center spacing b on
an otherwise plane hard boundary. Denote the angle of incidence with respect to the
normal by & and the azimuthal angle between the wave vector and the roughness axes by
@. Twersky’s results for the effective relative admittance B of a rough hard surface
containing non-periodically-spaced 2-D circular semi-cylinders are [32]

B=n-i§. (20)
with

£, @)= kV[-1+ (5 cos* (@) +sin* (@))sin* @)]+ O(k") @n

2 :
n(a,¢)="k3” 2 - Wz){(l—sinzasinchIH(%coszgo—sinzqo}sinza"+0(k5)- (22)

V =nma®/2 is the raised cross sectional area per unit length, n is the number of semi-
cylinders per unit length (= 1/b), é = 1-%1 is a measure of the dipole coupling between the

Y a:
semi-cylinders, / =—1, where

b
1, =2W(1+0.307W +0.137W*) for W <0.8,
=7t_:. _2(1_W) (1 W) >
I,=5 [1 7 ] +6 6 T 1202 for W 208
1=y for W= 1 (periodic),

*®
(1-W)* is a packing factor introduced for random distributions, W =nb* =2b— , b’is the

minimum (center to center) separation between two cylinders and k is the wave number.
The real part 7 of the admittance (which represents the incoherent scattering) is
zero only for periodic distributions of bosses. For grazing incidence normal to the



cylinder axes, o = 7/2 and azimuthal angle ¢ = 0 we obtain the effective admittance of a
rough hard boundary containing 2-D roughness as

%(n o(1+82/2kn'a’
B=%[(I-W')(+ 4) A -m(é-l)] (23).

According to Lucas and Twersky [31], for semi-elliptical cylinders with eccentricity K,
so that V =nma’K /2,

1+ K
J—W—KT. (24)
2

Twersky’s cylindrical boss theory may be generalized to scatterers of arbitrary shape by
comparison with equivalent results from Tolstoy’s work. Equations (20) to (24) may be
contrasted with the equivalent results from Tolstoy’s boss theory [33] for the effective
admittance of a surface containing 2-D roughnesses of arbitrary shape, after correcting
his expression for a missing coefficient 6: According to Tolstoy,

B =—ike(cos’ p - cos’ @), (25)
where

2, _ Y (2. .Y
e=V(V— l),a-[v ] s (26) |

2

55 =%(1+K)is a shape factor, K is a hydrodynamic factor depending on steady flow

-

around a scatterer, v, =1+ is a scatterer interaction factor, and V is the cross-

sectional scatterer area above the plane per unit length. Values of K are known for
various shapes [26]. Twersky’s and Tolstoy’s expressions for the imaginary part of the
effective admittance are equivalent for circular semi-cylinders if & is replaced by
-f;+ 1 =-ii . By comparing their results [32] it is possible to generalize (22) to give

2

n(a,(o)z!%z(l—W’){(l-sin’asin’¢{l+(—62;co§(p-sin’tp}sirfa]}+0(k’) @7),
where V represents the scatterer volume per unit area (raised area per unit length in 2-D).
These results allow predictions of propagation over bosses of the various shapes for
which K is known. In addition to the known values for semi-cylinders, semi-ellipsoids
and triangular wedges, K for thin slats may be deduced by assuming that each slat affects
the fluid flow as if it were a lamina [34]. The expression for the virtual mass of a lamina
of width 2a is identical to the one for a cylinder of radius a i.e. K = /. Equations (20),
(21) and (27) have been shown to give tolerable agreement with laboratory data over
rough hard boundaries, although predictions of a boundary element code have been more
successful [32].

Tolstoy has considered sound propagation at the rough interface between two
fluids [33] and hence allows predictions of propagation over a rough impedance
boundary [26]. Consider the general case involving a planar distribution of small fluid
scatterers, N per unit area, embedded in a fluid half-space with density and sound speed
p; and c; beneath a fluid half-space characterized by p, and c¢,. The scatterers have
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density p, and c,, height h, centre-to-centre spacing / and occupy a total volume ¢y, above

the plane.
where
If p, << p, and ¢, <c,, Or p, =p, and c, =c, and for 2-D scatterers, the effective admittance
is given by
By’ =ik cos® (0)ery + Bs (28),

where f3; represents the impedance of the imbedding plane,
e e e . = kX
£, =a,-b,, a, =20"[z. +p:] ol
b, =0,(1-m,/m,)

2
.,-1+——” B pmp Py g
3nr P~+P,
P, +Ps 2r0, [ p, - o,
=P gy =]t 29
= p. +Kp, S22 Van 3NI? [p +p,] (29)

and 8 (= 72 - @) is the angle between the source-receiver axis and the normal to the
scatterer axis.
If the embedding material and scatterers are rigid and porous then they can be treated
acoustically as if they are fluids but with complex-: densities and sound speeds. These
complex quantities may be calculated from any of the models described in the previous
section.

If |p.|>> p,, 5, =5, =v, =v, =1, equations (28) and (29) may be approximated by

B, =ik cos’(8)oy + Bs(1 - iksoy ) (30),
where kg is the complex wave number within the lower half-space (i.e. the imbedding
material).

As remarked earlier, Tolstoy’s results for hard rough surfaces ignore incoherent
scatter. It is a straightforward heuristic extension to write the effective surface
admittance of a porous surface containing sparse 2-D roughnesses as

B:’ =n-ikcos’(0)oy + Bs(1 - iksoy) @31)

where 77is given by (27), 8 = (2s2/V»), 52 and v are calculated from (29).
Figure 7 shows predictions of the change in the effective surface impedance of a porous
material consisting of identical triangular pores with increasing semi-cylindrical
roughness (including incoherent scatter). Figure 8 shows that the predicted normalised
surface impedance of a rough porous surface may be approximated by that predicted by
formula (2) with an effective flow resistivity given by 0.8 x the actual flow resistivity.
Also shown in Figure 8 are predictions of the formula

z, =2, -(ZGVR' I-z--l] (32).
WeCo AV

Results such as those shown in Fig. 8 may indicate why equation (2) has been successful
in modelling the impedance of outdoor ground surfaces. The predictions using Equation
(32) suggest that the effective normalised impedance of a rough surface is that of the
smooth surface but with a reduced real part.
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Figure 7 Predicted influence on the effective normalised surface impedance of increasing the surface
roughness of a porous material containing identical triangular pores with flow resistivity 200 kPa s m>,
porosity 0.4, tortuosity 2.5. The predicted normalised surface impedance of the smooth surface -is
represented by the solid lines. The dashed lines represent the predicted result of adding 5/m 0.02 m radius
semi-cylinders of the same material. The dotted lines show the predicted result of adding 20/m 0.02 m
radius roughnesses.

NORMALIZED IMPEDANCE
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Figure 8 Solid lines represent the predicted normalised surface impedance of porous surface as in Fig. 3.5
with 20/m semi-cylindrical roughness. The dotted lines represent the result predicted by equation (3.2)
with R,, = 0.8 x the actual flow resistivity. The dashed lines are predictions of equation (3.57).
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For high flow resistivities and low frequencies, fk; = y€2.. If the same approximations
that produce (30) apply, and if it is assumed that a = O (grazing-incidence) and 0= 0,

2,3
then n =3GVka(l -Wz) and (31) may be written
2,3
82" =iy (r1p L2 W e g (33)

This might be a basis for the acoustic determination of roughness in some circumstances.

5. Measurements of roughness effects outdoors

Data reported by Aylor [35] in 1971 demonstrates a considerable change in excess
attenuation over approximately 50 m range after disking a soil and without any
significant change in meteorological conditions. More recent short range level difference
measurements by Rickman [23] show significant differences between dry, wet and
ploughed conditions in a silt soil. These data are shown in Figure 9

SEVEL BITERENCE 4D
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1w 190" e
o= flathlry TREQUINCY Ity

—flatfert

ser phwgtnd

Figure 9 The spectrum of the difference between vertically-separated microphones at a range of 1 m from a
source situated approximately 0.3 m above a silt soil surface when dry (solid line), after rain and with
visible roughness (broken line) and subsequent to ploughing (dotted line). The source heights are 0.3285,
0.29 and 0.356 m respectively and the microphone heights are (0.288m, 0.0385m); (0.27m, 0.04m) and
(0.38m, 0.039m) respectively.

SUB-SOILED AND PLOUGHED AT 0 m
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Figure 10 Level difference spectra obtained at a horizontal range of 30 m from a 1.65 m high source with

microphones at 1 m and 0.1 m height over sub-soiled (solid line) and ploughed (broken line) clay soil.
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Other level difference data obtained recently over sub-soiled and ploughed clay soils [38]
show considerable changes in acoustic propagation (see Figure 10).
The short range level difference data in Figure 9 are fitted to some extent by assuming

reduced flow resistivity ( see Figure 11).

AFTER RAIN WITH SOME ROUGHNESS

£ & ¢t t .
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Figure 11(a) Measured and predicted level
difference spectra over wet silt soil. Predictions use
the identical slit pore hard-backed layer model with
flow resistivity 55 kPa s m?, tortuosity = 1/porosity,
porosity 0.44 and thickness 0.063 m.

CLOLGKED AND WET

YT Ay )

Figure 11(b) Measured and predicted level
difference spectra over wet silt soil. Predictions use
the identical slit pore hard-backed layer model with
flow resistivity 20 kPa s m™2, tortuosity = 1/porosity,
porosity 0.44 and thickness 0.15 m.

On the other hand (see Figure 12)) a combination of reduced resistivity and roughness
(through equation (33)) has proved to be tolerably successful in predicting the longer

range data shown in Figure 10.
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Figure 12 Data from Figure 10 for ploughed and sub-soiled clay soils and predictions using slit pores; flow
resistivities 8 and 80 kPa s m’2, porosities 0.5 and 0.4; thicknesses 0.175 and 0.08 m; roughness volumes

0.06 and 0.07 m>. respectively
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6. Concluding remarks

Recent developments in modeling the acoustical properties of rigid porous materials and
of rough surfaces together with impedance data and short-range propagation data have
been reviewed. A root-finding algorithm offers a convenient method for deducing
surface impedance from short-range propagation data. Both data and predictions indicate
that surface treatments have a significant influence on propagation. Comparisons of
predictions and data indicate that there can be some confidence in the models. However
further work is needed to enable prediction of roughness effects.
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Measurement of ground impedance with the level difference method
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Introduction

The acoustical properties of the ground, or the ground impedance, can be found by making two or
more simple propagation measurements. It is also possible to use some form of correlated
measurements or short impulses, but such methods are generally more complex and expensive than
propagation measurements. Nordtest (Nordic cooperation for standardization of measurement
methods) has initiated a project which aims at developing a simple and useful method to measure the
ground impedance, and this paper describes some of the experiences and conclusions reach during
this project.

In the following text the harmonic time dependence is assumed to be ™,

The level difference method

To compare a propagation measurement with theoretical calculations, one has to know the sound
power that our source emits and the distances involved. However, by using two microphones one can
study the level difference between the two microphones, and thus avoid the need to know the sound
power of the source. This is the fundamental idea behind the level difference method. To extract
information of the ground surface from the measurements, one must compare them with some form of
theoretical calculation. When an acceptable match has been achieved, the ground impedance can be
extracted from the theoretical model.

The theoretical model must describe the sound propagation, but more importantly, it must describe
how the ground impedance changes with frequency. The impedance model

1000 f 075 4 111,9(1000 f)4,73

Z =1+9,08(——— +il1,9(——— 0))

Jfirst published in [1], is used for most of the calculations in this text for this purpose. The method in
[2] is used to calculate the level differences from the geometrical situation and the impedance,
including the effect of third octave band smoothing.

A typical level difference curve has a distinctive dip and a peak, see figure 1. These come from the ;
interference between the direct and reflected rays, see the dotted and solid lines in figure 2, and they’
are changed in frequency location and shape by the ground impedance. Most of the information about
the ground impedance can be found around the dip and the peak, so it is useful to have them spread
out in frequency. When we use our impedance model to fit the theoretical curves to the measured
ones, what we do is in principle to extrapolate the information obtained around the dip and the peak to
lower and higher frequencies.

R4
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Figure 1

Level difference in
third octaves,
hs=0.5m, hr1=0.2 m,
hr2=0.5m,
d=1.75m

Solid - measured
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Dotted - calculated
values with

=400 000 (Ns/m"°)

Lp2-Lpt,dB
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Frequency, Hz

O Microphone 2 Figure 2
Measurement geometry

for the level difference
method

) " ".©O Microphone 1

Method limitations

The level difference method has limitations and source of errors that can throw the unwary user off
the track. One obvious limitation is, of course, that the theory must be valid. Some surfaces might not
even be locally reacting and for other surfaces, the impedance model might not be valid. Typical
surfaces that cause problems are snow and other layered surfaces. For the surfaces measured in this
project the impedance model gave very good results, so for most ground types, and within a certain
frequency range, the model seems to be accurate enough.

Another limitation is that the method is not well suited for hard surfaces. If the surface is very hard,
the only change in the level difference in comparison to an infinitely hard surface is a small frequency
shift of the dip and peak. If we use a third octave band analyzer this effect is hard to detect, but even if
we use a narrow band analyzer, we have to know the geometry to an unrealistic precision in order to
get a correct result.

Little or no information about the ground impedance can be extracted for very low frequencies with
the level difference method. Well below the first dip both the microphones measure the same
pressure, and thus no information can be found there. The impedance model (1) predicts high real
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and imaginary parts of the impedance for low frequencies, so the ground is hard there, which further
complicates the situation. To get the first dip low in frequency, a large ray path difference between the
direct and the reflected wave is needed, so the source and the top microphone must be high up from
the ground. Then the reflection angle decreases (angle to the surface normal), making the ground
harder (the spherical reflection coefficient Q is dependent on the reflection angle). This can be
compensated with a larger distance between the source and the microphones, but that leads to a
greater sensitivity to refraction and turbulence. The atmospheric turbulence affects the higher
frequencies more, so in principle we have a frequency band where the measurements are possible. The
lower frequency limit depends on how soft the ground is and on the geometry, and the high frequency
limit depends on weather conditions. A more thorough investigation of the weather dependence of the
method can be found in [3].

Nordtest method background

During 1997 a Nordtest (Nordic cooperation for standardization of measurement methods) project for
determination of ground impedance was initiated. New outdoor sound propagation models for rail and
road traffic noise have been under development for some years in the Nordic countries. The old
models used only two ground types, hard and soft. The new models will use a more complex
description of the ground, but very little data was found on the impedance of typical Nordic ground
types. Therefore Nordtest wanted to developed 2 method that any reasonably equipped laboratory or
consultant could use to measure ground impedance. This would simplify the survey of Nordic
impedances.

Afier initial studies the frequency range of interest was set to the octaves 250 - 2000 Hz (Third
octaves 200 - 2500 Hz), and the geometry was set to: source height 0.5 m, receiver 1 height 0.5 m,
receiver 2 height 0.2 m and the horizontal distance 1.75 m.

Ground classes

The level difference method does not require any complex equipment other than a third octave band
analyzer, and a source of some kind. It does require that you can evaluate the spherical reflection
coefficient, which involves the complementary error function for complex arguments. A way around
that is to use pre-calculated curves that the user can use to fit his measurements to as proposed in [4].
Another way is to use pre-calculated tables of level differences for different impedances and define
some kind of error which the user can calculate and then use to pick the best fit impedance. Both these
methods require that the impedance, or flow resistivity if we use the impedance model (1), is divided
into classes. The class that fits the measurements the best is the result. They also require that the same
geometry is used always, or that tables or curves can be obtained for all desired measurement
geometries.

The table method was chosen for the Nordtest method. The classes were chosen so that the error
between a class and its closest neighbor would be approximately constant, which lead to a logarithmic
spacing in flow resistivity, except for very hard surfaces were the steps had to be larger (table 1). Note
that these classes were not chosen to represent a useful set of classes for sound propagation purposes.
They were simply chosen to provide a uniform coverage of what was possible to measure within the
given geometry and frequency range. The level difference curves for the classes in table 1 can be
found in figure 3.

14
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Table ] Ground classes for the impedance model (1)
Class number, k 11231451 6] 7)]8]|9{10] 11 12
Flow res. kNs/m* |10}16[25]40] 63100/ 160|250 ] 400 | 630 | 2000 | 20000

15} Figure 3
Level difference in
10} third octaves. The
number adjacent to
st each line is the flow
] resistivity class from
- table 1.
I o [imp model (1)]
g,. hs=0.5m, hr1=0.2 m,
s} hr2=0.5 m,
d=1.75m
10}
-15F . . . . ) . ; , . .
200 250 315 400 500 630 800 100012501600 20002500

Frequency, Hz

The error E is defined as the sum over the frequency range of the absolute values of the difference
between the measurement and the reference, see (2). k is the class number (table 1), and the best fit
class is the class where the error E has its minimum value e, see (3).

25004z

E(k)= Y |AL,(f)=AL(f k) @)
S=200H:

e= n}‘in(E(k)) 3

It is more common to use the squared differences, but this leads to a stronger dependence of
deviations in isolated frequencies than if we use just the absolute value. This effect can be seen in
figure 4. The minimum error e obtained is a quality measure of the measurement. If it is low the
impedance model describes the true ground behavior well and the measurement is free from
disturbing noise. It can be high due to noisy measurements, turbulence and refraction effects, ground
unevenness and deviations in the true ground behavior from the impedance model. It can also be
higher if the actual flow resistivity is just between two classes, but this effect is small if the classes
are tightly spaced. But too many classes lead to difficulties in determining what class a ground surface
really belong to since it can vary between different measurements in that case.
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Level diff., qB i i . . . . ' . '
i R) = 6. A | Figure 4
10 :33&:%323 = ?19.1 Level difference in
sum{(A-R)*2) = 19.3 third octaves. The
sum((B-R}2) = 14.8 solid line (R)
S5t represents the
reference, and A and
B are simulated
or measurements.
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Mean spectrum

During initial measurements it was discovered that one single measurement could give quite unstable
results. It was therefore decided to make at least four independent measurements. If the four
measurements are evaluated each in turn, one will have four classes, possibly different, as the result.
If we use the measurements to make a mean spectrum (mean value of the SPL's in each third octave
band), we will get only one result. In table 2 a number of measurements are presented with the four
different measurements evaluated, and then the evaluation of the mean spectrum. Although the four
measurements can vary quite a lot it seems as though the mean spectrum gives quite stable results.
The measurements are described in the next chapter.



Table 2 Evaluation of measurements with the mean spectrum.
1-4 are the separate measurements, MV is the mean spectrum.
Measurement conditions and surfaces are described in the next chapter.
A SP DELTA VTIT SINTEF
M.NR |CLASS e CLASS e CLASS e CLASS (3
1 63 22.7 160 13.5 63 228 63 21.0}
2 100 14.6 100 22.0] 63 27.6 100 13.9
3 100 11.8 100 8.8 63 12.0 100 20.5
4 160 15.0 160 9.0| 100 244 100 9.7
MV 100 10.6 160 12.7 63 19.5 100 11.9
B Sp DELTA VTIT SINTEF
M.NR |CLASS e CLASS e CLASS e CLASS e
1 250 74 400 6.5 400 99 400 9.9
2 250 10.1 160 9.9 400 84 160 11.2
3 250 4.5 400 10.5 250 124 250 6.9
4 250 6.9 250 11.6 400 10.2 250 4.1
MV 250 5.0 250 74 250 8.5 250 5.9|
C Sp DELTA VIT SINTEF
MNR |CLASS e CLASS e CLASS e CLASS e
1 630 8.8 630 5.1 400 7.8 250 18.0
2 2000 11.9 630 5.5 400 7.1 400 6.9
3 2000 11.6 630 7.8 400 10.8 630 7.8
4 2000 14.1 630 6.6 630 6.8 2000 9.3
MV 630 10.1 630 5.2 400 7.2 630 8.1
D SP DELTA VIT SINTEF
M.NR |CLASS e CLASS e CLASS e CLASS e
1 2000 10.5 2000 10.3 630 13.1 2000 8.1
2 2000 7.2 2000 9.6 630 9.0 2000 8.6
3 2000 12.4 2000 12.3 2000 15.6 2000 11.6
4 2000 11.3 2000 10.6 2000 185 2000 10.6
MV 2000 10.2 2000 10.0 2000 13.9 2000 9.2

Nordtest verification measurements

During the 13-14 of May 1998 a series of measurements were made at Sjémarken outside Bords in
Sweden, in an effort to establish the reliability and versatility of the Nordtest method. The participants
were from four Nordic countries: SP from Sweden, VTIT from Finland, DELTA from Denmark and
SINTEF from Norway. Four ground surfaces, A-D, were measured by all participants, all with their
own equipment and personnel. In addition, SP made a few extra measurements with help from
SINTEF. All groups used the B&K sound power source type 4205 except SP, which used a special
built source with a 1%2" compression driver connected to a flexible tube.

The temperature was around 19°C both days, and the sky was mostly clear, with scattered clouds.
Wind speeds one meter above ground were 1-2 mv/s.

Table 3 contains a description of the ground type at the different positions, and table 4 contains the
measured ground class according to the preliminary Nordtest method.



Table 3 Ground description for the reference measurements

Ground | Description

A Rough grassland

B Exercise track, earth mixed with sawdust

C Soccer field grass

D Gravel parking lot

E Sandy forest floor :

F Soft forest floor covered with pine needl

G Soft forest floor with small blueberry bushes and moss
Table 4

Reference measurements at Sjomarken. The result is the flow resistivity in
kNs/m®, see (?). Results within parenthesis indicate an error difference E-e
of less than 4 dB for those classes.

Site Lab Min error | Max std dev | Result

A SP 10.7 3.32 100
A DELTA 12.2 3.26 160 (100)
A VTT 19.5 3.50 63 (100)
A SINTEF 119 3.55 100
B SP 5.0 1.52 250
B DELTA 7.4 2.27 250
B VIT 8.5 2.38 250 (400)
B SINTEF 6.0 291 250
C SP 10.1 2.20 630 (2000)

C DELTA 5.2 0.94 630
C VIT 7.2 1.73 400 (630)
C SINTEF 8.2 3.50 630 (400)
D SP 10.2 1.37 2000 (630)
D DELTA 10.1 0.89 2000
D VTT 139 5.24 2000 (630)
D SINTEF 9.2 1.80 2000
E SP 7.2 2.83 2000 (630)
F Sp 5.0 2.86 160
G SP 4.5 1.76 40
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Figure 5
All of the measurements for each site A-D

The multiple height method

The level difference method uses an impedance model. If the model does not describe the ground
behavior correctly, then the method will give erroneous results. The purpose of the model is to
extrapolate the information obtained around the dip and peak in the spectrum in frequency. But if one
could obtain a peak or dip for all frequencies, would it be possible to directly obtain the real and
imaginary part of the impedance?

Using more than two microphones will make it possible to get a dip in height instead of frequency,
see figure 6. For each frequency the dip will change height as the wavelength and impedance change.
If one assumes a locally reacting surface, and that the impedance is constant within a third octave
band, one can theoretically calculate the level behavior as a function of the height, and compare with
the measurements. This method was used, in principle, in [5). The question is if a SPL measurement
with a number of microphones will give a unique solution for the real and imaginary part of the
impedance. Due to the complexity of the expressions involved, this is very hard to evaluate.
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Figure 6
2 Level difference,
hs=1.5m, hr=0.1-
or 1 m, d=4 m. Third
octave band 500 Hz.
o 2 Calculated with
-:_ o0=200 000,
5 4} impedance model (1)
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Receiver height, m

Figure 7 displays a measurement of the ground impedance on a grass surface with both the level
difference method, and the multiple height method. The 12 different heights from table 5 were used.
The source height was 0.5 m, and the distance was 1.75 m. The error was defined as the sum of the
absolute value of the difference in level difference, with the lowest microphone as the reference. The
calculations were made with constant step of 0.25 (no unit, normalized impedance) in both the real
and the imaginary part.

Table 5 Receiver heights for the multiple height method (cm)

15| 20| 25| 30| 35 40] 45 50/ 55/ 60l e5] 70|
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Conclusions

W The ground impedance can be measured, within a limited frequency band and for non-layered
surfaces, with a number of simple level difference measurements.

B None of the measured surfaces showed any strong deviations from the basic impedance model
within the measured frequency range.

® Hard surfaces are difficult to evaluate with the level difference method.
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Measurement of Multipath Outdoor Sound Propagation with
Spread-Spectrum Signals
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Abstract

A method for measurement of multipath acoustic propagation is presented and applied to outdoor sound propagation. The method
employs spread-spectrum signals, in which a low-frequency sinusoidal carrier is bi-phase modulated by a pseudorandom maximal-
length sequence. The spreading of the signal spectrum is determined by the chip rate, or the rate at which the carrier is modulated;
faster chip rates result in broader spectra. Deconvolution of the received acoustic signals with respect to the transmitted signals
provides a filtered version of the channel impulse response, which in tum can be analyzed to obtain time delay and amplitude
estimates for each path in the propagation channel. This method has been tested in an outdoor sound propagation experiment in
the presence of atmospheric turbulence. Multiple spread-spectrum signals were transmitted from a loudspeaker and received by a
three-axis microphone array. Deconvolution processing of the received signals clearly resolved a direct wavefront and a ground-
reflected wavefront. The measured path lengths and arrival directions for these wavefronts were confirmed by a three-dimensional
ray-tracing model that incorporated sound-speed and wind-velocity profiles determined from meteorological measurements.

I. Theory

Spread-spectrum and other coded-pulse signals have proven useful for high-SNR measurements in several areas of
acoustics, including sonar [1)-[3] and ultrasonics [4]-[7] applications. Work performed in architectural acoustics
[8}-[10] has also shown that the impulse response of rooms, which includes complicated high-order multipath prop-
agation, can be measured accurately using direct-sequence coded-pulse methods. The work reported here shows that
high-resolution acoustic detection and ranging can be performed using spread-spectrum methods in the presence of
atmospheric turbulence. In the method outlined below, deconvolution of spread-spectrum source signals from received
signals results in a filtered form of the channel impulse response. This method is presented in greater detail in Ref. [11].
For linear acoustic propagation through complicated media, the general effects of propagation can often be ap-

proximated as a convolution:
y(t) = =(t) ® h(2), (1)

where z(t) is the transmitted signal, y(t) is the received signal, and h(t) is the impulse response of the acoustic
channel. The impulse response can, in theory, be determined by straightforward Fourier deconvolution.

When the input signal z has finite bandwidth, however, wideband deconvolution may not be possible to perform
stably. This problem can be overcome, at a loss of temporal resolution, by applying a bandpass filter ¢pp to the output
signal g before deconvolution:

B(t) ~ F—l [y(w)%P (w) (2)

#(w) ’

where A is the estimated channel impulse response. For numerical stability, the filter ¢pp can be specified such that
its frequency-domain support is similar to that of the input signal z(t).

Even for idealized propagation through a homogeneous acoustic path, the impulse response estimated from Eq. (2)
has finite temporal resolution if the system bandwidth is finite. In general, the methods presented here for impulse
response measurement result in temporal resolution limits that are inversely proportional to the window bandwidths
employed.
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Figure 1: Sketch of measurement configuration (top view). A spread-spectrum acoustic signal is continuously emitted
from a loudspeaker mounted on a building. After propagation, acoustic signals are received by a three-axis microphone
array and digitally recorded. The right panel shows a sketch of the microphone array.

II. Methods

The signals employed in this study are spread-spectrum signals obtained by bi-phase modulation of a sinusoidal carrier
by a maximal length sequence at a specified chip rate. Maximal length sequences were generated synthetically using
shift-register algorithms summarized in Table 3.7 of Ref. [12), then used to modulate sinusoidal carrier waves at a
sampling frequency of 4000 Hz.

The measurement configuration employed is sketched in Fig. 1 and discussed in greater detail in Ref. [11). During
the measurements, the temperature averaged 9.1° C and the wind speed at 10 m above ground averaged 7.9 m/s with
a bearing of 264°. Signals were played back from a single channel of a two-channel digital audio tape recorder
and broadcast from a loudspeaker mounted on a building 4.8 m above ground. A microphone was mounted directly
in front of the loudspeaker driver to record the acoustic near field of the source. Signals were received by a three-
axis microphone array mounted on a scaffold tower at a height of 6 m. Fourteen microphone sensors were spaced
logarithmically on the array. Sixteen signal channels, including the original digitally recorded source signal, the signal
from the near-field microphone, and the fourteen array microphone signals, were recorded synchronously to a sixteen-
channel digital audio tape recorder.

The digitally recorded signals were processed using custom software to obtain the filtered impulse response of each
channel. Spectra were computed using discrete Fourier transforms (obtained by FFT), taken over non-overlapping
rectangular windows for all available temporal data. The transform length for each discrete Fourier transform was the
number of samples corresponding to the temporal duration of a single MLS sequence for the signal employed. The
transfer function H (w) = §(w)/%(w) was computed separately for each rectangular window and all transfer functions
were averaged to obtain an estimate of the channel transfer function. The estimated channel transfer function was then
used in the deconvolution operation described by Eq. (2) to obtain the filtered impulse response of the medium. The
corresponding impulse response envelope was obtained by discrete Hilbert transformation. Impulse responses were
converted to range units using an assumed sound speed of 340 m/s. For the deconvolution, a Hanning-shaped filter,
with value unity at zero frequency and zero for |f| > 1200 Hz, was applied to the received signals. To determine
the direction of incidence for each arrival relative to each array axis, the peak positions corresponding to the first and
second arrival were located in the impulse response for each channel and a least-squares linear fit of path lengths vs.
array position was applied.

For comparison, propagation paths and corresponding arrival times were predicted using a three-dimensional ray-
tracing program. The program was based upon the ray-trajectory equations for a moving, inhomogeneous medium
(13, 14). The trajectory of each ray was determined by integrating the ray-trajectory equations using a fourth-order
Runge-Kutta method with a fixed time step of 0.5x 104 s. The mean sound speed and wind velocity profiles employed
were estimated from meteorological data and Monin-Obukhov similarity theory [11, 15).

€
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Figure 2: Illustration of impulse response computation for a center frequency of 400 Hz, chip rate of 200 Hz, and
sequence length of 127 chips. Left panel: transfer function. Right Panel: corresponding impulse response envelope.

III. Results

The measurement of impulse response is illustrated by Fig. 2. The results shown there were obtained using data from a
measurement employing a 400 Hz carrier wave, 200 Hz chip rate, and 127 chip sequence length. The computed transfer
function is depicted in the left panel of Fig. 2, while the impulse response obtained by inverting this filtered transfer
function is shown in the right panel. This impulse response clearly shows two peaks, which correspond to a direct
wave and a ground-reflected wave. A third peak, which is also discernible in most of the measured impulse responses,
is of unknown origin; this peak may be caused by scattering from a structure or from atmospheric turbulence.

Comparison of simulated and measured propagation paths is given in Table 1. The results show that the direct
and reflected paths measured experimentally correspond closely to those simulated by a three-dimensional ray-tracing
model based on measured temperature and wind profiles. It may also be noted that the average sound speed computed
from the ray simulations was 339.7 m/s, which is close to the speed of 340 m/s assumed for computation of propagation
path lengths in the measurements.

Results shown in Ref. [11] show that, for a variety of spread-spectrum signals with center frequencies between
200400 Hz, chip rates of 50-300 Hz, and sequence lengths between 127 and 1023, the filtered impulse response
shows direct and reflected arrivals with peak positions and widths close to those shown in Fig. 2. The mean 3 dB
peak width is 0.408 m for the direct arrivals and 0.438 m for the reflected arrivals. These widths are as small as a

quarter-wavelength at the 200 Hz carrier frequency; they correspond closely to theoretical resolution limits based on
the system bandwidth employed [11, 16).

IV. Conclusions

A method for precise measurement of multipath acoustic propagation has been presented and tested for outdoor sound
propagation in the presence of atmospheric turbulence. Filtered impulse-response functions, obtained by deconvolu-
tion processing of spread-spectrum signals, show multiple arrivals that have been shown to correspond to direct and
reflected propagation paths. Measured path lengths and arrival angles for these paths agree well with simulated results.

It has also been shown that impulse-response measurements with resolution of features much smaller than the
carrier period can be achieved. The range resolution achieved using the present method is nearly independent of the
carrier frequency, modulation frequency, and sequence length employed, but is instead determined primarily by the
effective system bandwidth used in computation of the filtered impulse response.

The methods presented here have potential for further studies of atmospheric sound propagation. The inherently
high SNR and high resolution of spread-spectrum methods should allow measurement of long-distance multi-modal
propagation like that that occurs in the presence of atmospheric temperature inversions. Since high resolution can
be achieved for fairly narrow-band signals, the current methods may also be useful for accurate measurement of
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Direct Path Reflected Path
Experiment Simulation Experiment Simulation
Elevation angle 1.6° 2.4° 13.7° 13.9°
z-axis bearing -19.4° -21.9° -19.4° -22.0°
y-axis bearing -72.8° —68.1° -72.2° —68.0°
_Range (m) 46.1 46.8 479 48.2

Table 1: Measured arrival angles and path lengths for direct and reflected paths in a turbulent atmosphere, obtained
using spread-spectrum processing with a carrier-wave frequency of 400 Hz, chip rate of 200 Hz, and sequence length
of 127 chips.

frequency-dependent effects such as propagation through atmospheric turbulence and refiection from an absorbing
ground. However, assessment of the potential for measurement of frequency-dependent effects using spread-spectrum
signals requires further investigation.
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Abstract

A hybrid Boundary Integral Equation — Fast Field Program (BIE-FFP) procedure is
described and used to simulate the propagation of sound in a medium with an
arbitrary sound speed profile above an irregular, impedance ground. The method uses
the boundary integral equation to allow for the non-uniformity of the ground
boundary (impedance mismatch, a barrier or hilly terraain) while utilising the FFP
formulation to moddel a refracting atmosphere by discretising it as horizontal layers.
Steps and approximations taken to increase the efficiency of the procedure are
discussed, as well as methods for allowing for the effect of turbulence in the
calculations. The hybrid BIE-FFP is validated by comparing its predictions with scale

model measurements available in the literature.
Introduction

The Boundary Integral Equation (BIE) is a powerful numerical procedure in
predicting sound pressure field in the presence of noise barriers and other scattering
objects. It is able to account for both forward and back scattering. But the method

requires that the sound field be known in the absence of the scattering object (the so-
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called Green’s function). There have been many applications of the Boundary Integral
Equation to prediction of the sound field beyond a barrier in a neutral atmosphere but
few studies exist that attempted to include the refracting atmosphere!!, Recently, a
hybrid method to account for the non-homogeneous atmosphere was outlined®® and
used to predict the performance of noise barriers in down wind coaditions. Here, this
procedure is described and applied to the prediction of the sound field in a refracting

medium above a non-uniform boundary. Other

Theory

Let a line source produce a time harmonic sound field in a medium, D, bounded by a
locally reacting impedance surface, S. This impedance plane can have features such as
barriers, hills, impedance discontinuities etc. The Boundary Integral form of the wave

equation can be written as

£6(r,2) = G(r.x,) - Hc(n)ag‘(l("’)) o(r..z ,)ﬁ;”))}ds )

where ry is the position vector of the boundary element ds, and n is the unit normal
vector out of ds. The parameter, €, is dependent on the position of the receiver. It is
equal to 1 for r in the medium, % for r on the flat boundary and equal to the Q2% at
edges where Q is the solid angle. The Green’s function, G(r,r,), is the solution of the
wave equation in the domain in the absence of scatterers. The integral is then the
contribution of the scatterer elements to the total sound field at a receiver position.
This integral formulation is the so-called Helmholtz-Kirchhoff wave equation. By

allowing the observer points (r) to fall on the boundary, an integral equation for the
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field potential at the boundary is obtained. The equation, the BIE, is a Fredholm
integral equation of the second kind. Once solved, the contribution of the scatterers
can be determined by evaluating the integral in eqn. (1) and hence the total field for
any point in the entire domain, D. This is the main BIE equation for the acoustic field
potential in the presence of non-uniform boundary. The BEM is concerned with
reducing the acoustic propagation in a medium to the boundary integral equation and

solving this integral equation numerically.

The derivative of the unknown field can be reduced if we assume a locally reacting

impedance boundary condition on all surfaces:

d
dj;' ik, fp =0 @)

where B, the admittance, is a function of the position on the boundary. One would

then have:

£d(r,2) = G(r,r,) - J 9,02, {dcoﬂG(r r,)- aG((r’r))}ds rr, €S (3)

The boundary surface is discretized in some fashion assuming the unknown potential
to be constant in each element, thereby reducing the integral equation to a set of linear

equations.

m=l -hi2

L¢(fnz,){ikoﬁG(l"l‘,) agnz 3)}48 Z¢ 'Tn{ikoﬁc(r,r,)-%:)‘)-}dj @

In principle, the integral on the right-hand side can be evaluated numerically. Then
the BIE becomes
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where A denotes the integral on the right-hand side of eqn. (4). Substitution of r =r,,

n=1...M, produces a set of M linear equations.

)+ Y AC 1)=Clm)  n=l. M (6)

m=l

It is easily seen that the Greens function G(r,rs) will be singular at r=r; i.e. at diagonal
elements when n=m. One can use the principal value of the integral for the integrals
involving the singularities. For ﬁ.u'thel" discussions on the stability and uniqueness of
the solution see reference 6 and references therein. It is Sufﬁcient here to state that the
solution of the eqn. (3) is unique except near characteristic frequencies of the space

enclosed by the barrier.

The Green’s Function G(r)

The Green’s function represents the sound field derivative in the medium in the
absence of the ‘boundary’. In order to minimize the number of elements, the Green’s
function includes the reflection from the flat impedance ground surface.

The Greens function for a line source radiating cylindrical waves above a locally

reacting impedance plane can be written as

Glrors)=—= [Plan 2k Jexplt, R), 0

Where r, [=(x2, z2)] and r; [=(x;, ;)] are the source and receiver position vectors
respectively and R is the horizontal separation between them. For a neutral medium it
can be evaluated analytically in terms of Hankel functions®”), In a refracting medium,

the integral in eqn. (7) is evaluated by the FFP method.
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The infinite integral is truncated at a suitable value, $ay kmar, and the integral is
replaced by a finite Fast Fourier Transform (FFT) sum. The variable of integration, &,
can be thought of as the horizontal component of the wavenumber. To .avoid the
possible poles on or near the real £ axis, the path of integration is deformed below the
real axis. To avoid atrificial oscillations in the solution caused by the truncation of the
integral at a finite value a Hanning window is multiplied to the kernel of the integral

as suggested by K. Wilson!®,

The kernel function @ is now independent of range and is in one dimension only. This
function is the solution of the one dimensional Helmholtz equétion in presence of a
plane impedance boundary. For a homogeneous fluid this solution is known and is
given in terms of up and down going plane waves. In an inhomogeneous medium
such as a refracting atmosphere or in upwind or downwind conditions with an
arbitrary sound speed profile, the potential function cannot be determined
analytically. Instead, a scheme similar to the finite element method can be utilised
whereby the fluid is divided into unif&m horizontal layers. The boundary conditions
at the layer boundaries determine the wave potential amplitudes in each layer. These
conditions are continuity of normal particle displacement and pressure across the
boundary. The resulting equations are set in a global matrix, which is solved to
produce the wave amplitudes in all layers. The value of the kernel function at one or
more desired positions can then be derived easily. The main advantage of the Global
Matrix formulation of the FFP is that the wave field in the entire x-z plane is

evaluated at once thus reducing the computation time considerably. The derivative of
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the Green’s function can also be evaluated easily and at the same time. The derivative

term is recognized as the dipole field oriented in the direction of R,

A high level of accuracy is required in evaluating the Green’s functions in the

Boundary Integral Equation. The FFP values for the pressure are accurate only at the

spatial grid points and an interpolation scheme for range values in between the grid

points, while providing accurate values for the magnitude of the pressure, fails to give
adequate accuracy for the phase values. This means that the midpoint of barrier
elements must be made to fall on the grid points of the FFP scheme. This requirement
puts constraints on the integration parameters such as truncation value (kna) and the
number of integration points (N). There are three stages where calculations involving

the Green’s function and its derivatives are performed (figure 1):

A. Evaluating the Green'’s function in the absence of the barrier.

B. Calculation the radiation from the source to each element on the barrier (the right
hand sides of the equation); and

C. Evaluating the radiation from each element to every other one (i.e. evaluating the
matrix elements in equation (4);

D. The contribution of each barrier element to the sound received at the observation
point (i.e. evaluating the boundary integral after the matrix equation has been
solved).

In theory a single FFP step is sufficient to evaluate sound pressure at all points in the

x-z plane. In practice though, memory and storage considerations make this

impractical. Nevertheless, considerable time saving steps can still be taken in each of

the three stages.
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Figure 1 The stages required in solving the BIE

Apart from the case where a large area of the boundary has to be discretized (as in an
uneven ground surface) the physical size of the scatterer is small compared with the
radius of curvature. If then the horizontal separation between the elements is small,
the sound speed profile plays very little role. In this case the Hankel functions
approximate the Green’s function sufficiently. Even when a large area is discretized
and the separation between elements can be large the main contribution to the field in
each element comes from its neighbours. It is therefore still a good approximation to
ignore the effect of refraction and use Hankel functions instead. Thus, the effect of
refraction has been ignored in evaluating stage C.

Use of the FFP approach in evaluating the Green’s function allows one to make
efficient computations in certain typical cases. In particular, if the scatterer has
vertical sides, the right hand sides for each vertical section (stage B above) is be

evaluated with a single FFP step.



The same is true for the last stage (i.e. contributions from each element to a single
observer point) if one uses the reciprocity property of the Green’s function and its

horizontal (or x) derivative.

The effect of atmospheric turbulence in sound propagation at long ranges is
significant. The only method available in the literature to include effects of turbulence
in the FFP formulation is that suggested by Raspet and Wul'"), In their formulation of

the FFP, the average pressure squared is given by
(p*(r.t))= %Re[ij | ﬁ(K)p'(K')e"(""‘”"T(K,K')JKK’deK') ®)
00

where T(K,K") is the average effect of the decorrelation in phase and amplitude on the
interference of horizontal wavenumbers X and X’. Evaluation of the pressure clearly
requires a double summation instead of the FFP with huge increase in computational
effort and memory requirements. For these reasons, the effect of turbulence has been

omitted in this report.

RESULTS AND CONCLUSIONS

The numerical scheme outlined above has been compared to scale model
measurements carried out by Rasmussen? in a wind tunnel. Their measurement set
up consisted of a thin barrier 2.5m high at a distance of 20.m from a point source 2. m
above an impedance surface. The Excess Attenuation of sound re free field was
measured at a microphone positioned 40.m behind the barrier and 1.m above the

surface. A wind speed gradient of approximately 1.0 m s/m was generated by a fan.
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Figure 2 Measured (solid line) and predicted (circles) excess

attenuation of sound at a receiver behind a barrier 2.5 m high in down

wind conditions.
Figure 2 shows the measured (solid line) and predicted (circles) Excess Attenuation
spectra for this geometry. The data has been taken from figure 11 of reference G &
is seen that there is a reasonable agreement between predictions and the data. The

greatest divergence is at the minimum at 1500 Hz which is probably due to the

influence of turbulence which has not been taken into account here.

Figure 3 shows an example of Sound Pressure level above a ground where the first
400m of the range is a hard ground while beyond the distance of 400m the ground is
acoustically soft (low flow resistance). Also plotted is the predicted SPL over the hard
ground (solid line). It is seen that the interference patterns of the two theoretical plots
match up to about 450m. In this example, a frequency of 50Hz has been assumed with
the source and receiver heights at 5.0 and 1.2m respectively. A positive sound speed
gradient of 1.0s" has been assumed. The hard ground is assumed to have an

impedance of (19.5 +25.3i) and the soft ground an impedance of (6.2+12.0i).
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Figure 3 Predicted SPL (re free field) above an acoustically hard ground
(solid line) and one where the ground becomes acoustically soft after 400.m.
The source and receiver heights are 5.0m and 1.2m respectively and the
frequency is 50.0 Hz. The sound speed gradient is 1.0 5",

In conclusion, the method proposed in this paper integrates the Boundary Integral
equation and the Fast Field Method to simulate the sound field in a medium with an
arbitrary sound speed profile above an uneven terrain. It has been compared to scale

model data available in the literature favourably
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ABSTRACT

A rigid-porous model of a snow cover, rather than a viscoelastic treatment, has been used to
simulate measured, horizontal acoustic waveform propagation above a dry snow cover 11 to
20 cm thick. The waveforms were produced by explosions of 1-kg charges and propagated
Jrom 100- to 1400-m distances. These waveforms, with a peak frequency around 50 Hz, show
pulse broadening effects similar to those seen for higher frequency waves over shorter
propagation distances. The predicted average snow cover depth of 15 cm and effective flow
resistivities of 30 - 41 kPa s m? agree with snow pit observations and with previous acoustic
measurements over snow. For propagation in the upwind direction, the pulse broadening
caused by the snow cover interaction is lessened, but the overall amplitude decay is greater
because of refraction of the blast waves.

1 INTRODUCTION

Military training activities and firing ranges can produce loud sounds that cause
significant annoyance to civilian populations. To minimize this annoyance, noise prediction
models are often used to schedule military activities during periods when atmospheric and
other environmental conditions are favorable.  However, a better understanding of
environmental effects on sound propagation and predictive models capable of including these
effects are still needed.

A series of blast noise measurements has been conducted in Norway to investigate the
effects of forest vegetation, micro-meteorological conditions, and winter ground conditions,
and their temporal variations, on the propagation of low-frequency impulse noise. The goal of
these measurements was to elucidate these environmental effects and to provide data suitable
for validating more realistic propagation models.! In an earlier analysis of some of the
Norwegian experimental data, Hole2 used a viscoelastic Fast Field Program3 to predict pulses
for propagation distances up to 1400 m. Predictions of overpressure amplitudes correlated well
with experimental data in strongly upward and downward refracting atmospheres when a wet,
slushy snow surface was present. However, the predicted amplitudes and waveforms did not
agree with the measured results when a dry snow cover was present. In this paper, we analyze
a subset of these measurements to examine the effect of a snow cover on the blast waves. Our
purpose here is to determine whether a rigid-porous model of the snow can predict the
measured waveforms better than does the viscoelastic model. '

Many authors have predicted overpressure as function of distance from the source,* 5 but
there have been fewer predictions of the entire waveform.6-9 Albert and Orcutt!® compared

*Permanent address: Norwegian Defence Construction Service (NDCS), Oslo, Norway
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predictions and measured waveforms for short range propagation above a snow cover, and
showed that the rigid frame porous model of Attenborough!! (and its low-frequency
approximation) gave good agreement with the large waveform changes that were observed.
Subsequently, the Attenborough model has been applied!2 to similar measurement data in an
inversion process to find the snow parameters that control the acoustic effects of the snow
cover. This paper applied this rigid-porous model to predict waveforms at much longer
distances and lower frequencies than were previously examined.

In the next section, we describe the measurements and the experimental data. This is
followed by a brief outline of the theory of acoustic pulse propagation above a rigid-porous
medium and the waveform inversion method used to determine the snow parameters. The
results of these theoretical calculations are compared with the measurements, and conclusions
are presented in the following sections.

2 FIELD EXPERIMENT
2.1 Description of site

Acoustic measurements were obtained on 22 February 1995 in an open field of
pastureland at a site about 200 km north of Oslo, Norway. The field was virtually flat, with a
dry snow cover about 0.1 to 0.2 m deep. Below the snow, there was a frozen crust of soil, 0.5
m thick, which had very high compressional wave speeds (around 3000 m s™)!3, and a density
of 2100 kg m>. Apart from this thin frozen layer, conditions were superseismic; i.c., air
pressure waves traveled faster than seismic compressional body waves, which had a typical
speed of 300 m s*. Below the frozen soil crust, the soil density was around 1600 kg m™.

2.2 Meteorological and snow conditions

Meteorological measurements were carried out using tower-mounted instruments and a
tethered balloon!4. During the acoustic measurements, the average wind at 10 m above ground
was around 5 m s, blowing approximately from the south towards the north, and the air
temperature was around 0°C. The atmospheric sound velocity profile was almost constant with
time and with height during the acoustic measurements. However, because of the influence of
the wind, the value of the sound velocity was 326 m s towards the south (upwind) and 336 m
s towards the north (downwind) in Figure 1. Figure 2 shows the meteorological conditions
during the acoustic measurements. Even though the wind profiles are almost constant with
height, the wind shear close to the ground (which is not visible in Figure 2) caused a difference
in propagation conditions for the two directions studied. This will be described in section 4.

Observations were made in two snow pits, concurrent with the blast noise
measurements!S: 16, The total snow cover thicknesses in the two pits were 18 and 16 cm. A
hard snow layer just above the ground surface was overlain by an ice crust, and topped by a
layer of newly fallen, partially broken precipitation grains. The bottom layer was 9-10 cm
thick with a density of 300-350 kg m®. The grain size in this layer ranged from 1 to 4 mm,
with rounded clusters and mixed faceted grain types, indicating that some metamorphosis was
occurring. The ice layer at the bottom was 1 - 2 cm thick. The top layer was 5-6 cm thick,
with smaller grain sizes (0.5-1 mm) and a low density of 125 kg m>. Snow cover depths
measured at other locations in the field on the day of the blast tests ranged from 11 to 20.5 cm,
with most values between 14 and 16 cm.



2.3 Acoustical measurements

The Department of Applied Acoustics, University of Salford, England, carried out the
acoustical measurements. We analyze only the acoustical data recorded using microphones
placed at the snow surface. Table 1 contains a description of acoustical instrumentation used at
both locations; 2048 samples were recorded for each shot at a sampling rate of 6.4 kHz. The
reader is referred to a special section in the Inter-noise'96 proceedings for further details on all
these measurements!: 17-21,

The experimental geometry is presented in Figure 1. 1-kg charges of C4 explosive2 22,23
were detonated 2 m above the surface along a line between the two acoustic measurement
stations, which were 1500 m apart. The blast waveforms for both the north and south locations
are shown in Figure 3. For both recording locations, the duration of the waveforms increases
as the propagation distance increases, and the peak amplitude decreases with distance. The
amplitude decay is caused in part by spherical spreading of the blast wavefront, and in part by
environmental effects, as will be discussed below. The measured pulses have a broad
frequency content from about 10 to 100 Hz. For the source, the central frequency for the 1 kg
C4 detonations used here is around 50 Hz, compared to a frequency of around 200 Hz for the
blank pistol shots used in previous measurements!0. For the snow surface present during these

measurements, we observed that the highest frequencies were quickly attenuated as the blast.

waves propagated.

The waveforms recorded at the north location last longer than those recorded at the south
location, and they also exhibit small irregularities in their early portions that do not appear in
the south location waveforms. Except for the shortest propagation distance (100 m), the north
location waveforms also have higher peak pressure amplitudes than those at the south location.
These differences with respect to propagation direction will be discussed below.

3 THEORY
3.1 Pulse waveform for a rigid-porous medium and homogeneous atmosphere

Although a method of calculating pulse shapes based on an empirical model of ground
impedance?4 has been developed-8 25 and works well for grass-covered ground, we have
included a more complicated, but physically based, model of ground impedance in our
calculations to give better agreement with observed measurements for snow!?. This model
gives increased accuracy at low frequencies compared to the empirical model. We briefly
outline the procedure for calculating theoretical acoustic pulse waveforms from a known (or
assumed) surface. For a monofrequency source (with frequency @) in the air and a receiver on
the surface, the acoustic pressure P at a slant distance r away from the source is given by

—£(1+ ) e (1
= Q)e

V|~

where P is a reference source level, k is the wave number in air, and Q is the image source

strength representing the effect of the ground. At high frequencies (&~ >> 1), Q can be written
as26-28

=R, +(1-R,)F(w), @
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where Rp is the plane wave reflection coefficient, F is the ground wave term, and w is a

numerical distance, all of which depend on the specific impedance Z(@) of the ground. By
determining Q,, at a given frequency f, , the response P, can be written as,

Po 2 |
Pn=mS"WnQne n'f,',r/c’ n=0,1,2,..N-1 ®

where S, and ¥, represent the source and instrument effects at frequency index n and c is the
speed of sound in air. An inverse FFT, :

N-1
.,,,=%Z g~i2mmniN m=0,1,2,...N-1 )

is used to construct theoretical pulse waveforms in the time domain. An explicitly layered
model of the ground must be used to represent thin snow covers?? using (omitting the
frequency subscripts),

. Z,-iZytank,d
Z—Zzzz—iz,tank,d

&)

where d is the snow layer thickness, &, is the wave number in the snow layer, and Z, and Z; are
the impedances of the snow layer and substratum, respectively.30

The acoustic behavior of the soil or snow is specified by the impedance Z, and wave
number k, , which are used in equations (5) and (2) to find the theoretical waveform. We use
Attenborough's four-parameter model of ground impedance!! to calculate these parameters.
The four input parameters are the effective flow resistivity o, the porosity (2, the pore shape
factor ratio Sfs and the grain shape factor n’. The snow depth-d and the substrate properties are
also required in a layered model.

After some experimentation, a simple analytic source pulse S(#) was adopted for the
calculations. This source pulse has been previously used in other wave propagation codes3: 31,
The form of S(?) is

S(t) =sin(2 z £ )~ 0.5 sin(4x £ 1) ' ©6)

where ¢ is time and f is the central frequency. A value of fo = 50 Hz was used for the 1-kg
charges. The waveform and spectrum of the source are shown in Figure 4.

3.2 Inversion technique

The acoustic pulse calculation method can be used in a waveform inversion procedure to
determine the acoustic model parameters needed to correctly model the observed waveforms!2.
The calculated pulses are directly compared to the observed pulses, and the input parameters
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are varied in a systematic way using an iterative search procedure32 until good agreement is
obtained.

For our rigid-porous medium calculations, the grain shape factor n’ was set to 0.5,
corresponding to spherical grains, and the porosity £2 = 0.698 was determined from the
measured average density, 275 kg m>, of the entire snow cover. We fixed the pore shape factor
ratio Sf at 0.8 for dry snow!2, Parameters for the frozen soil beneath the snow were fixed at &

=3000 kPasm", 2=0.27, » Sp= 0.73, and »n’ = 0.5.12 Only the effective flow resistivity o of

the snow and the snow depth d were varied in the inversion procedure.

Waveform inversion to determine the snow parameters was performed independently for
each source-receiver distance. We compared calculated and observed pulses using time-
aligned, normalized waveforms.

4 RESULTS

The measured and automatically calculated waveforms are compared in Figure 5. The
snow parameters determined from the inversion procedure are listed in Table 2. In general
there is good agreement, except at the shortest range of 100 m. This distance would be most
affected by inaccuracies in the estimated source pulse used in the calculations. The waveforms
measured at this short distance also seem to be affected by some nonlinear effects, due to the
large pressure arrival, that are ignored in the theoretical calculations.

Figure 6 compares the experimentally measured waveform for the north measurement
location with the rigid-porous snow cover calculations of this paper and with a viscoelastic Fast
Field Program (FFP) calculation that did not take the dry snow cover into account2. The
propagation distance was 1300 m. The improvement in the modeling accuracy using the
porous treatment of the snow is clear from this figure.

The snow cover depths determined by the theoretical waveform inversions were
consistently near 15 cm, in agreement with the measured snow depths. The effective ﬂow

resistivities are nearly constant for the north location, with values between 30 and 41 kPa s m'.

For the south location, the values are higher, 46 - 78 kPa s m and they seem to fluctuate
randomly with distance.

These results can be explained by the effects of the snow cover and the wind. At the
north location, the propagation of the blast wave is “downwind,” so that the waves tended to be
refracted downwards causing them to interact strongly with the porous snow. While the
refraction by the wind tends to increase the wave amplitude, compared with the case of a
homogeneous atmosphere, the interaction with the snow decreased the amplitude and elongated
the waveform. This pulse broadening leads to a low effective flow resistivity in the inversion
process. The inversion results are consistent, as the propagation distance increases because the
snow cover was fairly uniform.

The pulse broadening observed at the south location was less than at the north, so the
effective flow resistivities are higher. Here, the propagation was into the wind, so that the
waves tended to be refracted upwards, away from the snow surface. Although these waves
interacted less with the snow cover, they have lower peak pressure amplitudes because some of
the energy that was refracted upwards never reaches the microphone on the ground. The
amplitudes, and the inversion parameters, fluctuate more than for the north waveforms because
they are strongly affected by slight fluctuations in the wind. The waveform and amplitude
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changes in this case are caused more by the wind-generated refraction than by snow cover
interaction.

A single frequency (50-Hz) poroelastic calculation33 demonstrates the effect of the wind
shear close to the ground (Figure 7). A snow depth of 0.2 m, an effective flow resistivity of 30

kPa s m'z, and a porosity of 0.689 were used. At the ground, the model sound velocity was 331
m s”, while at 10 m height above the ground, the sound velocity was 336 m s towards the
north and 326 m s towards the south. Figure 7 clearly demonstrates the wind effect at this low
frequency. The calculation predicts a 4 dB difference between up- and downwind propagation
at 100 m, and a 24-dB difference at 1 km, which agrees reasonably well the measured
amplitudes, but shows that the downwind enhancement was overpredicted. The measured
difference of 11 dB at 1.1 km is large, probably because of the simple atmospheric model that
was used and because the snow cover effect was underestimated in the calculation.

The effective flow resistivities, 30 - 41 kPa s m°2, determined for the snow cover from the
north location waveforms are slightly higher than has been determined from most previous
pulse measurements on snow!2, 15,21, The relatively high flow resistivities are not attributable
to the use of an incorrect source pulse in the calculations, as waveform inversion tests with
higher frequency source pulses (fo = 75 and 100 Hz) gave nearly the same results (depth and
effective flow resistivity) for the longer propagation ranges.

While the higher effective flow resistivity values for snow are believed to be accurate, the
possibility that the waveform inversion method and the parameters resulting from this
technique have some dependency on frequency cannot be eliminated. As additional evidence
for these values, impedance tube measurements34 done the day after the blast measurements

also gave relatively high values for the effective flow resistivity of 59-69 kPa s m. However,
rain had fallen on the snow by that time, and the warm air temperature overnight may have
caused substantial changes in the snow structure by that time.

5 SUMMARY AND CONCLUDING REMARKS

Blast waves propagating in the up- and downwind directions above a dry snow exhibit
pulse broadening caused by wave interaction with the snow cover. By modeling the effect of
the snow cover using a porous medium model, our predicted pulses are in much better
agreement with experimental results than are previously published calculations using the
viscoelastic Fast Field Program that did not take the dry snow cover into account. Our results
indicate that a porous boundary condition will need to be included for non-homogeneous
atmospheric conditions when a snow cover is present.
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TABLE 1
Acoustical instrumentation for each station.
Microphones 4 B&K, 4147
Preamplifiers 4 B&K, 2639
Recorders 1 of 4 ch., SONY PC 204 DAT
Analyzers 2 Oni Sokki

Sampling heights 0,2,4,and 8 m
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TABLE 2
Waveform inversion results.
North Location South Location
Range Effective flow Snow depth Effective flow Snow depth
(m) resistivity (o) (cm) resistivity (o) (cm)
kPa s m* kPas m?
100 17 30 (38) (23)
200 24 20 31 (24)
400 30 16 46 17
750 38 15 65 14
1100 41 15 48 13
1300 34 14 67 14
1400 40 15 78 12

Values in parentheses are loosely determined by the waveform inversion process.
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Figure 1. Plan view of the experimental layout. The orientation of the sensor line is 341°
true. Detonation height was 2 m, and the acoustic waveforms were recorded using surface
microphones at the 0 (upwind) and 1500 m (downwind) locations.



122
500 500 — 500
EL- ]38 4 4=} s}
400} " a0} o}
asaf asof § asol 4
300} 4 30} 4 30}
E E
:E,zs: 22 { €m0
£ g
200} 200} 4 200}
1) 41 =f } 19F
1w} 100 100}
0 4 = £ 3 4
[ . 0 — L 0
[ 5 10 15 100 200 200 =10 [} 10
Wind tpeed [m%) Wind discton (*Ny Ak terperziure (°C)

Figure 2. Meteorological conditions during the blast noise measurements, 22 February 1252-

1308 UTC, measured by Tethersonde!. The wind speed was approximately 4-5 m s during
the tests, and always blowing approximately from the south along the detonation line.
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Figure 3. Normalized blast waveforms experimentally observed by surface microphones for
I-kg explosive charges detonated 2 m above the surface. Although the propagation distances
are the same for both observation locations, the waveforms recorded at the downwind location
are longer than those measured at the upwind location.
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Figure 5. Observed and predicted waveforms at the snow surface, made using the rigid-
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Figure 7. Poroelastic FFP calculations at 50 Hz, for upwind (north, solid line) and downwind
(south, dashed line), measurement locations. Points are the peak amplitudes of the measured
waveforms, scaled to match the calculated levels at 100 m.
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THEORETICAL ANALYSIS OF PULSE PROPAGATION ABOVE A CURVED
SURFACE WHICH SUPPORTS A SURFACE WAVE.

Richard Raspet, National Center for Physical Acoustics, University of Mississippi, University,
MS 38677

Keith Attenborough, Kai Ming Li and Qiang Wang, Engineering Mechanics Discipline, The
Open University, Milton Keynes MK7 6AA, UK

At the recent Acoustical Society of America meeting in Seattle, K. M. Li and Q. Wang [J.
Acoust. Soc. Am. 103 (No.5, Pt 2),2802(1998)]reported measurements of pulse propagation over
a convex impedance surface whose imaginary part of impedance was much larger than the real
part. The theory of Raspet et. al. [J. Acoust. Soc. Am. 89(1),107-114 (1991)] predicts that one of
the residue series contributions corresponds to the complex impedance surface wave. As such it
displays a much reduced phase velocity. Li and Wang observed the splitting of a pulse into two
parts, even though a single mode dominated the prediction for the carrier frequency. They
speculated that each mode may contain components of an ordinary creeping wave and a surface
wave. In this talk we demonstrate that the shape of the pulse envelope is critical in measurements
of single frequency phase velocity measurements over the complex impedance curved surface
and present calculations of diffracted pulse shapes with and without surface waves.

Introductions

At the spring meeting of the Acoustical Society of America, K. M. Li and Qiang Wang
presented measurements of acoustic pulses propagation over a convex cylmdncal surface.' The
surface was designed to produce complex surface impedance whose 1magmary part is much
larger than the real part. The theoretical research of Raspet, Baird and Wu’ predicts that such a
surface should support a surface wave of much reduced phase velocity in addition to the ordinary
residue series contributions. Li and Wang observed the separated residue series and surface
wave pulses as expected but also found pulse sphtting for frequencies which were predicted to
only support surface waves. In this paper we mvesngate the pulse shapes predicted for Li and
Wang'’s surface using the theory of Raspet et al’ in the pulse propagation prediction of Daigle
and Raspet.’

Calculations

Li and Wang fit level difference measurements for their surface to Attenborough’s
exponentla]ly varying impedance model.* They found an effective flow resistivity of 4.0 kPa s
m” and an exponential rate of porosity change of 570 m". Figure 1 displays the transfer function
predicted for the geometry of Li and Wang’s Figure 2: z =4.0 cm, z =2.0 cm, r = 1.5 m. The
surface wave component clearly dominates below 4200 Hz.
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Fig 1. Magnitude of the transfer function for the surface wave and first residue
series for sound propagation above a 25m radius cylinder
z,=02n, Z =B,=04m,r=15m

If a 12 cycle 400 Hz pulse with a Gaussian three cycle transition at the front and back is input
into the pulse propagation prediction (Figure 2), the result is the waveform shown in Figure 3. It
appears as if two wave components are present although the surface wave should be the only
measurable contribution at 4000 Hz. Careful examination of Figure 3 reveals that the frequency
context of the pulses is quite different from 4000 Hz. The spectral broadening of the pulse
creates lower and higher frequency components which travel at different velocities.
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A 24 cycle 4000 Hz pulse with a Gavssian envelope was then run. This pulse shapes
minimizes spectral broadening of the 4000 Hz line. The output from this signal is shown in
Figure 4. The output pulse is a single attenuated replica of the input pulse.

Output wave
0.02 utp :
0.01
e
g 0
[+]
8
'0.01 "l"l'l'
-0.02 :
0 0.0025 0.0050 0.0075 0.0100 0.0125

time
Fig 4. Output wave for a 4000 Hz pulse with a Gaussian envelope.
Next, the same input pulse scaled to 4650 Hz was input into the prediction. According to Figure

1, the output pulse should contain significant surface wave and residue series components. This
is in fact the case, as is illustrated in Figure 5.
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Fig 5. Output wave for a 4650 Hz pulse with a Gaussian envelope.

The phase and group velocities of the two components were calculated in order to investigate the
separation velocity of the two wave contributions. These velocities, as a function of frequency,
are displayed in Figure 6. The separation velocity in Figure 5 corresponds to the group velocities
in Figure 6.
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Fig 6. Phase and group velocity for the surface wave and residue series.

As a final calculation, the pulse shape due to a single cycle at 4650 Hz was input to the
theory. The output pulse from this is shown in Figure 7. If the first two maxima are considered
as separate pulses, the separation velocity approximates to the phase velocity. Group velocity is

only a valid concept if the pulse retains its original shape.
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Fig 7. Output wave for a single cycle 4650 Hz pulse.

Conclusion

Care must be taken in using acoustic pulses to investigate the surface wave over a
complex impedance curved surface. The dispersion and attenuation of the surface wave
contribution vary so rapidly with frequency and distance that conventional ideas of phase and
group velocity may not be valid. Further analytic investigations will be pursued in the future.
The experimental results of Li and Wang will also be analyzed in the near future.
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Abstract:

An overview of research in sound propagation in forested areas is presented and directions for future research are
identified. Although much research has been done in the area of sound propagation within and through forested and
densely vegetated areas, the available literature is scattered and varied. Furthermore, the different findings are
sometimes contradictory: one researcher may find a large attenuation, while the next finds only minimal effects.
Some of the differences are due to variations in the methods employed, such as source and receiver locations and
heights, noise sources, and how the data are presented. Comparisons are not immediately obvious because some of
the data are presented in dB/100m, dB/100ft, and other length scales, and different test sites are used. Also,
meteorological conditions are rarely noted, as many researchers felt that the conditions were constant and/or small
enough to neglect. Advances in measurement techniques and sound propagation models have opened the doors to
new possibilities in research. Improved measurement equipment now allows researchers to gain a more accurate
view of what really happens to sound in a forest and better meteorological sensors assist in determining what effect
the microclimate under a forest canopy really has on the propagation of sound. Developments in outdoor sound
propagation models, such as the parabolic equations method, allow scientists to more efficiently and accurately
model the sound propagation around and through forested areas.

Introduction:

A limited amount of research has been done in the area of sound propagation within and through forested and
densely vegetated areas. Unfortunately, this literature is scattered throughout many publications, and has not yet
been summarized in a major refereed journal. The literature available is scattered and varied. Articles pertaining to
this topic can be found primarily in acoustical journals, conference proceedings, theses, and biological journals. The
different interpretations of findings are sometimes contradictory. Most research has found some attenuation in the
forest, but not all researchers consider the amounts to be significant. Some of the differences are due to variations in
the methods employed, such as source and receiver locations and heights, pure tones vs. random noise, point sources
vs. line sources, and how the data are interpreted and presented. Comparisons are not immediately obvious because
some of the data are presented in dB/100m, dB/100ft, and other length scales, and different test sites are used. Also,
meteorological conditions are rarely noted, as many researchers felt that the conditions were constant and/or small
enough to neglect.

Figure 1 shows the frequency ranges studied in each paper cited here. Note that the low-range frequencies have
been largely neglected.

This compilation of the major research to date will benefit many different groups, including community noise
boards, private companies, and biologists. Community noise boards will be interested because it will help them to
better evaluate noise problems and determine potential solutions. Private companies will be able to use the
information to better secure their facilities through acoustic detection. Biologists can use the information to develop
new, non-intrusive ways to study wildlife populations.

Advances in measurement techniques and propagation models have opened the doors to new possibilities in
research. Better equipment will allow researchers to gain a more accurate view of what really happens to sound in a
forest. Better meteorological sensors will assist in determining what effect the microclimate under a forest canopy
really has on the propagation of sound. More powerful computers will help process data more efficiently.
Developments in outdoor sound propagation models, such as the parabolic equations method, will allow scientists to
more efficiently and accurately model the sound propagation around and through forested areas.
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Previous Research in the Forests of the World:

Work in the area of sound propagation in forested areas has been done all over the world, from the jungles of
Panama to the dense forests of Maine and the Netherlands. Surprisingly, much of the information extracted from
these various tests agrees reasonably well, although factors such as tree type, forest density, forest age, terrain
features, and density of undergrowth all cause the numbers to vary.

The earliest article published in the area of sound propagation through forested areas was in 1946 by Carl Eyring'.
He investigated octave band noise for frequencies between 150 Hz and 10 kHz in the jungles of Panama. He
defined the term “excess attenuation” (EA) to mean any attenuation above and beyond that due to spherical
spreading. He assumed that any excess attenuation was due to the jungle, since he determined that wind velocity
and temperature gradients were negligible in the jungle. He located both the source and receiver inside the
Panamanian jungles studied, and the raised the receiver ~1.5 m (5 ft) above the ground in order to mimic the
placement of a human ear. Eyring determined that optical visibility is related to the excess attenuation, i.e. less
optical visibility related to more excess attenuation. In 1959, Wiener and Keast® performed a similar study in the
dense woodlands of Eastern Maine. Their data agreed with Eyring’s data of comparable optical visibility. Wiener
and Keast state that absorption effects dominate over scattering effects. However, it should be noted that the
receiver was located ~1 m (3 ft) above the ground.

In 1963, T. F. W. Embleton® found larger average excess attenuations by around 2-3dB/100m. However, he placed
the source outside of the forest and the receiver inside, instead of both source and receiver inside, as Eyring and
Wiener and Keast did. The extra 2-3 dB of attenuation present in his data could be because of the source and
receiver locations. Previous studies didn’t include the edge effect of the forest. Embleton found the attenuation to
follow an S-shaped curve. He postulated that the curve shape could be indicative of absorption due to branch
oscillations. Further analysis showed that while the frequency dependence could follow from branch oscillations,
the magnitude of excess attenuation did not. In his 1971 Master of Science thesis, Alan Bjornsen® showed that
attenuation is indeed greater when the source is located outside the forest, thus forcing the sound to trave! through
the forest edge. He studied three different forest types, and found similar results for each, although the frequency of
maximum attenuation differed for the three forest types. In that same year, Richard Frank’ published his Master’s
thesis on the effectiveness of plants as highway noise barriers. He studied heterogeneous deciduous forests, and
homogeneous deciduous forests. He found that the heterogeneous forest attenuated sound better, possibly due to the
thick understory. He determined that forest plantings, although not very effective noise barriers, still have merit as
highway barriers for aesthetic and safety reasons. Cook and van Haverbeke® published a study for the U. S.
Department of Agriculture in 1971 with their recommendations for the use of trees and shrubs for noise abatement.
They found that a belt 20 feet thick would be adequate for residential noise abatement, while 100 feet was needed
for freeway noise reduction. They also found that the belts of trees must be wide, dense, and preferably made up of
coniferous trees. These recommendations would lead to a 5 to 12 dB reduction in noise levels. Their measurements
were through the belts of trees, i.e. source on one side and receiver on the other side.

In 1972, researchers started to look into the causes of attenuation in more detail. Donald Aylor” ® found in his two
studies that foliage was the main attenuation device for mid to high frequencies, while the ground was mainly
responsible for low frequency attenuation. He also found broad leaves attenuate sound better than narrow ones. In
1976, Leslie Frank® studied tree bark and the forest floor as absorbing elements in the forest. He found that tree bark
has a low absorption coefficient (approximately 0.05), while the ground has a much higher absorption coefficient,
ranging from 0.15 to 0.60 for low frequencies and from 0.45 to 0.90 for high frequencies. He also determined that
the ground absorption is greater when the soil is moist, and when covered by leaf litter. In that same year, Linskens
etal' published a study of the dependence of season on attenuation. They found that low frequencies were more
attenuated in the forest during the winter, while high frequencies were more attenuated in the summertime.
Herrington and Brock'" studied attenuation as a function of height. They found that above 15 feet, there is no
significant difference in attenuation with height. However, below 15 feet, the ground absorption plays an
increasingly larger role. ‘

In 1977, Carison, McDaniel, and Reethof'? studied the absorbing characteristics of tree bark and the ground. They
found the absorption of tree bark and the ground using impedance tube measurements. They found that thicker bark
provides more absorption than thin bark, with absorption coefficients ranging from 0.02 to 0.10. This is a larger
range than L. Frank obtained, although his results do fall within that range. They measured the ground absorption to
be as large as 0.9 at 2000 Hz, and less for lower frequencies. This agrees well with the findings of L. Frank. The
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sound propagation measurements used the source and receiver in the forest, with heights between 1.5 and 2.4 meters
(5 and 8 feet), as well as temperature gradient measurements up to 15 m (50 ft). These studies showed that the
absorption acts like spherical spreading over short distances, and then diverges to become greater at longer
propagation distances. Marten and Marler*? (1977) and Marten, Quine, and Marler'* (1977) studied the effects of
receiver height in a forest and in the jungle. They found similar results for both cases. In each case, they found that
trees improved transmission for frequencies below 3 kHz for heights above 1m. However, frequencies below 2 kHz
were quite attenuated near the ground. They found that height affected attenuation more than the habitat type. That
same year, M. J. M. Martens'® published a study that looked exclusively at the influence of the soil on sound
propagation. He constructed a computer model of the ground interference that takes care of the phase shift that
occurs when the sound wave reflects off the ground, assuming the soil is reflecting. He took some propagation and
weather data, and found that the low SPL in the 200 to 600 Hz range was caused by interference of the direct and
reflected sound waves. By comparing the calculated and experimental SPL’s, he was able to calculate the reflection
coefficient of the ground, and therefore its acoustic impedance.

As advances in technology allowed for smaller sensors and Laser-Doppler vibrometers, both of which had less
mechanical impact on the physical systems than earlier devices, researchers started to investigate smaller and more
specific components of the forest. This allowed for more detailed information about which components effect which
frequencies the most. Thermoviscous absorption was found to be the major contributing factor in attenuation due to
pine boughs (Burns, 1979)'. That same study also looked at effects due to the flexing of trunks and branches,
flexing of needles, and scattering. Martens and Michelsen'” (1981) found the absorption due to a single plant leaf by
using a Laser-Doppler vibrometer to study the leaf vibrations. They found the absorption to be quite small on a per

leaf basis, but speculate that since the typical tree has 2x10 3 leaves, the absorption could be significant. In 1986,
Geveling, Martens, and Roebroek'® did another study with a Laser-Doppler Vibrometer, and found the leaves to be
linear systems for frequencies between 75 Hz and 2000 Hz. They also state that the vibrational response of a leaf
depends on its structure, physiology, and amount of energy loss. Tang, Ong, and Woon" (1986) simulated sound
propagation through six different types of leafy foliage using a Monte Carlo technique. They measured leaf
vibrations for six different types of leaves to determine the amount of sound energy transferred into heat. They
report that leaves may alter or scatter sound via diffraction, reflection, and interference. The leaves were modeled as
circular disks over some “leaf area density”, randomly arranged in position and angular orientation. The results
compared well with Martens “Foliage as a low-pass filter” (1980).

Through these same times, research continued on a larger scale as well. Many studies included computer models as
computational power grew. Yamada, Watanabe, Nakamura, Yokoyama, and Takeoka?® measured similar locations
with and without hedges to determine the absorption due to the hedges. They calculated the absorption coefficient

of an individual tree, and found it to be proportional to -\/7 . Although the hedges didn't attenuate much on their

own, they are still desirable as a barrier for visual purposes. They also looked at the masking effect of wind noise in
the trees, and found that it ranged from 30-70 dB, depending on wind speed. In 1980, Martens®' modeled a forest in
an anechoic chamber. He found that foliage acts as an amplifier in the mid-range frequencies, and a noise filter in
the high frequencies. Martens’s model is effective for frequencies between 200 Hz and 12.5 kHz. In his 1980
Masters thesis, Talaske? speculated that the absorption in a forest is caused more by the thick organic layers that the
trees produce, which lowers the impedance of the forest floor, than by the trees themselves. In 1981, Martens®
found that more excess attenuation occurred at 1.2 m above then ground than at 3.9 m. He also found that at least 12

m of trees are necessary for any noise control, and that the trees need to be planted in rows perpendicular to the
direction of the sound field for maximum attenuation.

In 1982, Bullen and Fricke® modeled propagation through a large number of trees as a classical diffusion problem.
They derived a general differential equation and compared the predictions to a small scale model study and to field
measurements. They found trees to be transparent below 1 kHz at 60 m. In 1984, Fricke® contradicted Martens
(1981), finding that directionality didn’t matter for attenuation. Fricke found that the attenuation was caused by
three main phenomena: interference between direct and ground reflected sound, scattering by tree boles, and the
ground. He found that the attenuation was due to the size and spacing of trees for high frequencies, due to scattering
for mid-range frequencies, and due to the ground for low frequencies. Then in 1986, Fricke?® postulated that he had
been in error about the low frequency attenuation. His new evidence pointed to the effects of the temperature
gradients near the ground. He also found that attenuation generally increased with increasing relative humidity over
a wide range of frequencies and forest types.
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1986 saw the Workshop on Sound Propagation in Forested Areas and Shelterbelts in Nijmegen, the Netherlands.
This workshop brought many fine researchers together from the fields of acoustics and biology. At this workshop,
Martens and Huisman®’ presented their findings that close-planted forests attenuate sound better than belts of trees,
conifers attenuate better than deciduous trees, and deciduous trees attenuate better than grass with no trees. Price,
Attenborough, and Heap?® presented a study on propagation in three different types of woodlands: a 30 year old
Norway spruce plantation, a 38 year old mixed stand of oaks and Norway spruce, and a 15 year old mixed
coniferous stand. They found that the mixed coniferous stand had the highest attenuation. Huisman and Martens®®
developed a ray-tracing model for sound propagation that included effects of vegetation. It attemnpted to include
wind and thermal effects, but the model only worked reliably for isothermal, windless conditions and did not allow
for changes in topography. In actuality, the program (called RAYFLUX) was composed of four separate models: a
micrometeorology model, a ground impedance model, a vegetation absorption model, and a ray-tracing model.
Brown® reported on acoustical measurements of background noise, broadcast signal attenuation, and reverberation
for three East African habitats: rain forest, riverine swamp, and savanna. He found four factors that determine the
maximum audible distance of representative primate vocalizations. These are 1) signal amplitude and spectrum at
its source, 2) transmission characteristics of signals of various frequencies in the natural habitat, 3) amplitude and
spectra of background noise, and 4) masked auditory threshold of the signal embedded in environmental background
noise. He found that over short distances, there is no difference in propagation for the three habitat types, but for
distances over 50 m, loud calls traveled better in the rain forest than over the savanna. It is important to note that the
data for this finding was taken during the day, and that the savanna receiver height was lower than that in the forest.
Reijnen and Thissen® studied the effects of road traffic on breeding bird populations. They found that bird
populations near major roadways had fewer birds than those populations away from major roadways. The lesser

numbers can be attributed to noise emission, visual stimuli, air pollution, vibrations in the ground, and individual
deaths due to collisions.

Several more papers came out from 1988 on that incorporated more intricate models. For example, as a follow-up to
their 1986 paper, Price, Attenborough, and Heap*? (1988) compared their previous measurements to 2 model. The
model summed up the separate contributions of the ground, trunks and branches, and foliage. The trunks and
branches, and foliage were modeled by a modified multiple scattering approach. The characteristic shape of the
attenuation curve obtained was low-frequency peak(s), a mid-frequency dip, and a net increase with frequency
above the dip. The model predicted the characteristic shape quite well, but not the actual numbers. Tang and Ong®
(1988) used a Monte Carlo technique again, this time to model traffic noise with and without trees alongside the
roadway. The situation modeled was high rise buildings on both sides of the street, with a single row of trees on
either side. They found that the trees attenuate high frequencies, especially higher up in the buildings, but that there
is no attenuation below 1 kHz. In 1991, Huisman and Attenborough® published a report that studied the
reverberation and attenuation in a pine forest at 10 m and 100m from the source. They looked at meteorological
conditions and the effect of the receiver location with respect to height. Several different models were employed in
trying to understand the data. For low frequencies, a point source calculation using a two-parameter ground
impedance model worked. They tried a multiple scattering model for high frequencies. It worked reasonably well,
but failed to explain the height dependence. For the middle range of frequencies, they attempted to simply add the
two models. Unfortunately, the forest is too complicated, and this approach did not yield satisfactory results. In the
course of their search for an appropriate model, they determined, contrary to Bullen and Fricke, that a diffusion
model is inappropriate for sound propagation in forested areas. The meteorological data that they took allowed them
to determine that meteorological conditions have little effect on the data at a distance of 100 m. In 1996, Watanabe
and Yamada®® used rectangular plates to model trees. They did experiments in an anechoic chamber, and found
directionality in the attenuation. This directionality was attributed to non-spherical spreading. They assumed that
attenuation is mainly due to scattering and absorption in the stems, branches, and leaves. They found the absorption

coefficient for trees to be proportional to ‘f? » which agrees with Yamada, Watanabe, Nakamura, Yokoyama, and
Takeoka.
Future Research Needs:

While the research to date covers many aspects of sound propagation through forests, many more measurements
need to be done in a more standardized fashion. Sound level measurements with respect to range and frequency



e

135

need to be done in forests with known statistics. These statistics include tree size, type, and spacing, and terrain
type. Wind and temperature profiles must be taken below the canopy. Scattering measurements are needed to
determine the arrival direction of a signal. Finally, ambient noise measurements are needed for a variety of forest
types and microclimates. These ambient noise measurements will include wind and rain noise, as well as wildlife
and insect noise. To date, most researchers have neglected the meteorological conditions below the canopy. They
justify it by taking measurements during neutral meteorological conditions. Very few studies have taken ambient
noise measurements, and fewer have incorporated the masking effects of the ambient noise in their reports.

Advances in atmospheric sound propagation models*® should allow researchers to incorporate forests into these
models. It is now possible to do wind and temperature profile modeling accurately. These improved models allow
faster computation times, thus making them more reasonable to use.

The research needed will have many practical applications for many varying fields of interest. One of these
applications will be to community noise planning. If the planners know how much a given stand of trees should
attenuate noise, they can predict the noise impact of an installation, such as a factory or an outdoor amphitheater on
a community. The research will also be of interest to companies and citizens who want to employ some trespasser
alert system. The companies would use a network of sensors to determine whether or not there is a trespasser on the
site. Finally, this research will be of great interest to those interested in wildlife management. Knowing ambient
noise levels and signal propagation, they will be able to do things such as count endangered species and determine
the impact of man on animals, all in a non-intrusive manner. The non-intrusive manner will allow for more accurate
representations of the situations, since there would be minimal human involvement. People would only be needed to
place, repair, and retrieve the sensors. Theoretically, the sensors could be in place for long periods of time.

Although much work has been done in the area of sound propagation through forested areas, there is much more that
needs to be done. The work to date has resulted in varied data, with little or no attempts to correlate to forest type
more specific than simply tree type. Therefore, no statistical data is available for people to draw upon to make
decisions regarding the use of forested areas for sound attenuation or wildlife study. This paper has compiled much
of the research to date to assist others in making judgements regarding the use of forests, but a substantial amount of
research is still needed to better quantify the effects of forests on sound propagation.
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Abstract

In real conditions meteorological effects (wind and temperature profiles, turbulence)
have to be taken into account in order to calculate the efficiency of noise barriers.

Boundary Element Methods are nowadays widely used for describing the acoustic
field around complex noise screens (various absorbing properties and shapes) in
homogeneous atmosphere.

Besides, in order to assess for the acoustic propagation in inhomogeneous media a
few models have been recently designed (Normal Modes, Residue Series, Parabolic Equation,
Fast Field Program ...).

The aim of this work is to take advantage of the power of the Boundary Element
Methods and to include in these formulations meteorological effects using as the appropriate
Green's function these recent propagation models in inhomogeneous media.

In this paper this new hybrid formulation, called Meteo-BEM, and the methodology
used is presented. The academic case of a rigid thin noise barrier on a flat ground under a
known sound speed gradient condition is studied. Numerical simulations compared to
experimental results show that this method is a powerful tool for outdoor sound propagation
prediction and offers interesting possibilities for further developments.



1. INTRODUCTION

Most country regulations concerning traffic noise are today more and more demanding,
leading to lower and lower maximum acceptable sound levels. There is consequently now a
need of sound prediction at long ranges. Besides, noise barriers are nowadays widely used as
traffic noise control devices and it is commonly found that the insertion loss of barriers
measured outdoors at long range is often much lower than predicted. This appears to be due to
the influence of meteorological conditions: wind and temperature gradients, turbulence. So
there is a need to investigate the meteorological influence on the performance of noise
barriers.

For predicting noise barriers efficiency a few now well-known tools (empirical [1], semi-
empirical models [2], ray theory [3, 4, 5, 6, 7}, Boundary Element Methods -BEM- [8,9,10))
exist but very few of them do take into account meteorological effects. Among these tools
valid in homogeneous media, the Boundary Element Methods have the advantage, although
being rather computer time consuming, to allow to assess for any kind of shape and
absorption of the propagation domain boundaries (in particular uneven terrains, various
shapes of sound barriers, impedance discontinuities).

On the other hand recent models [11] have been developed in order to describe the acoustic
propagation in inhomogeneous media (Normal Modes, Residue Series, Parabolic Equation,
Fast Field Program, Gaussian Beams).

So the aim of the work presented in this paper is to show that it is possible to keep the
advantages of the BEM and to extend these methods to inhomogeneous media using an
appropriate Green's function taking meteorological effects into account, coming from these
recent inhomogeneous models.

We present here this new approach, called Meteo-BEM, combining a Boundary Element
Method with an appropriate meteorological Green’s function. The methodology used is first
given and then comparisons are made with experimental results.

At first we recast briefly in section 2 the Boundary Element Method in homogeneous
media and point out the power of the Green's function; then we present the inhomogeneous
model] taking meteorological effects in section 3; section 4 presents the hybrid method;
comparisons between theory and experiments are given in section 5, and finally we conclude
and give perspectives of our work in section 6.

2. THE BOUNDARY ELEMENT METHOD IN HOMOGENEOUS ATMOSPHERE

Let us consider a harmonic point source S in a semi-infinite domain 2 whose boundary ¢
is the ground and a barrier (figure 1).
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, Figure 1: Notations.

Considering linear acoustics assumptions and temporal dependency exp(-iwt), the problem
in homogeneous atmosphere can be described by the following system:

A
(A+k2}>=55,MEQ M
! lim 3_np(M)-ik L2 pav) | =0 2
MeQ—-Peoc [ n(M)p( ) Z,
Sommerfeld conditions for p 3)

p is the total acoustic pressure, k the wave number, 8; represents the point source radiation,
p is the air density, c the sound speed and Z, is the normal acoustic impedance of 6.

The acoustic pressure can be expressed as a sum of the incident pressure (the pressure
radiated by the source) plus a linear combination of simple and double layer potentials (the
pressure scattered by the boundary) [12,13].

p(M) = py(M) + ap (M) +Pp,4(M) G

where the incident acoustic field in free space is:

Po(M) = exp(kr(5, M) in 3D Po(M)=—i-Ho(kr(S,M) in 2D

4o (M, S) (5)
and the simple and double layer potentials ps and pg are:
p.0)= [VEIGMPITE)  pu(M)= [ PO, OMPIIT(P) (6)

In this direct integral formulation G is the key Green’s function that is indeed an
elementary solution of the problem satisfying to certain boundary conditions. The more
boundary conditions are included in the Green's function the smaller is the integration domain
being considered as a secondary source so that the total acoustic field is the superposition of
the incident field and the contributions of these secondary sources.

vand p denote respectively the simple layer and the double layer potential densities.
These functions are unknown and have to be determined using the boundary conditions. The
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introduction of the acoustic pressure in the boundary conditions leads to a boundary integral
equation that has to be solved in order to get the unknown layer potential densities.

Using for example a collocation method a linear system gives then these unknown
functions and then the acoustic field is known in the whole space via the direct integral
formulation.

This BEM is called indirect because v and L have to be first determined to lead to the
acoustic pressure anywhere in the space Q via the equation (4). The mathematical method
presented here is exact and the pressure solution of the boundary value problem is unique
provided that both the propagation medium and its complementary are infinite.

The keypoint in this formulation is the use of the adequate Green’s function: we said that
the more information you put in the Green’s function the smaller the integration domain is.
That is why different authors have first concentrated on the ground effects in order to reduce
the domain G to the noise barrier I" (see figure 2) but all these works have been restricted to a
homogeneous atmosphere. In this work meteorological effects are introduced via the Green’s
function.

For the sake of clarity consider without any restriction the case of a rigid thin noise barrier
on a rigid flat ground (figure 2). The boundary condition (2) is then a Neumann condition:

lim 9 {ap(M)=0
MeQ—Pel’ n(M}

)
Figure 2: Thin noise barrier on a flat ground.
Daumas [8] showed that the solution could be represented by a double layer potential:
p(M)=p,(M)+ Ir 1(P)2,G(M,P)dI(P)vMe Q
®)

Including ground effects in the Green's function G allows one to reduce the integration
domain to the sound barrier I'. This Green's function is given by:

G(P,M)= —%Ho (kr(P,M)) -—%Ho (kr(P',M)) ©)



where P' is the image source corresponding to P with respect to the ground plane. Hp is the
Hankel function of the first kind and of order zero. The incident pressure due to the source S
is then given by:

poM)=G(ES,M) (10)

Expressing the Neumann condition on the screen the following Fredholm integral equation
of the first kind is obtained:

' ~3npq)Po(M)= PF_[ru(P)an(M)a,,(,,)G(M,P)dr(P)VM el o

Because of the singularity of the Green’s kernel the integral is taken in the sense of the
Hadamard finite part. The definition used is according to Filippi [14] the limit of the normal
component of the gradient of the double layer potential when the point M approaches the
screen.

This integral equation is solved using N collocation points Mj on the screen. Looking for a
piecewise constant approximation for the unknown double layer potential density the sound
barrier I is discretized into subelements I'; and yields the linear system:

-0 n(M)Po (M i )= zﬂij . an(M)an(P)G(M j,P)dl"(P)
inj 1

+ uiPFI pan(M)an(P)G(Mj'P)dr(P) j=LN (12)

This equation represents indeed the contribution of the interaction between the source in
presence of the ground and the screen.

Equation (12) can be rewritten as:

[aln]=[B] (13)

,

B]= [Bj]"' ["anPo(Mj)]
with MEL™ 14

(Al= [A ji]= [PFJ 8 an(M)an(P)G(Mj’P)dr(P )]

The integrals are computed using an adaptative Gauss-Legendre scheme and the linear
system is solved using a full pivoting Gauss strategy.

Once the layer density p is known the acoustic pressure can be calculated at any receiver
point with the direct formulation (8). The integral formulation of the double layer potential
represents then the contribution of the radiation of the sound barrier to the total acoustic field.
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The results obtained with this Boundary Element Method were compared to Time Delay
Spectrometry -TDS- measurements made at CSTB [15]. Figure 3 shows a comparison for the
case of a rigid barrier on a rigid flat ground. The source, receiver and screen heights were
respectively 1.5 cm, 10 cm and 15.25 cm. The sound barrier was 50 cm far from the source
and the distance between the source and the receiver was 150 cm.

The comparisons give good agreement between the BEM results and the measured data.
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Figure 3: Comparison between TDS measurements and the homogeneous BEM.

3. THE GREEN’S FUNCTION ACCOUNTING FOR
METEOROLOGICAL EFFECTS

Meteorological effects (wind and sound speed gradients, turbulence) are important in
outdoor sound propagation particularly at long ranges.

In the classical Boundary Element Methods the Green’s functions can include the ground
effects-[16,17]). The idea of this work is to take advantage of recent propagation models in
inhomogeneous media taking meteorological effects as well as ground effects into account.
One will concentrate here on refraction phenomena. These recent models describing sound
speed gradients are mainly Normal Modes for downward refraction, the Residue Series for
upward refraction, the Fast Field Program and the Parabolic Equation for both situations [11].

In order to illustrate the methodology used for including this inhomogeneous Green’s
function in the BEM, consider without restricting the generality the case of a positive sound
speed gradient condition.
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Furthermore, the above acoustic pressure formula is valid in 3-D so it needs to be adapted
to 2-D configurations because the BEM approach used in this work is written in 2-D.

This is done using the idea outlined in [20] p.276, considering the form of the normal
modes in 2-D and 3-D. A trivial change has to be performed to get the 2-D solution and (19)
becomes:

exp(ik,nAi(t, +z, /1Ai(t, +z,/1)
k,%a [AiGx, )P - [ai e, )F (22)

* The results obtained with the Normal Modes program were compared satisfactorily to
results from the benchmark [11] for downward refraction. Figure 4 shows the results for the
case 2 fig.12 p.187 at 100 Hz, the source and receiver heights are Sm and 1m, the range varies
from 0.1 to 10000m, the specxﬁc surface impedance of the ground is Z.=(12.81,11.62) and the
sound speed gradient is 0.1 s™!
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Figure 4: Normal Modes Transmission Loss versus range for the case 2, 100 Hz, fig. 12,
p.187, JASA 97(1), 1995.

Figure 5 shows the comparison between measured data (fig.8c JASA 93(6), 1993,p.3111)
and 2-D/3-D results from the Normal Modes theory. The source and receiver heights are 0.1
and 0.15m, the frequency is 1000 Hz, the radius of curvature of the rays R is 20m.
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In the case of a linear sound speed profile, the Normal Modes solution [18] is particularly
well adapted to this situation since the variables involved in the analytical formulation are
uncoupled and straightforward to derive.

The pressure wave equation solution satisfying on the one hand the same conditions as for
the homogeneous problem and on the other hand the height dependent sound speed condition
for inhomogeneous media can be written as follows:

__ |
:‘ p(r,z) = Eo (kr)P(z,k)kdk 15)
In the case of a linear profile, c(z) =c(0)(1+2z/R) (16)

the height dependent Green function P(z,k) can be expressed in terms of Airy functions and
their derivatives: '

M 2in/3 . 2in/3
P(z,k>=—2ne‘“’°1Ai(r+y>)[Ai((r+y<)e’*"”)-(‘°“(“Ai. (,;::ﬁg; ’}«i(ﬂya]m)

ko =2nf/c(0), q=(kgpc)/z, 1=[R/2k2}", R=cldcldz)

where o _ k2 -k2)2, y=z/l, z, =max(z,.z,), z.=min(z,.z,)

(18)

R is the ray paths curvature radius, z; is the source height and z, the receiver height.

Then, using the residue theorem, the poles of the integrand are calculated and the
contributions of the integrand residue at each pole are summed up to obtain the expression for
the acoustic pressure in downward refraction for a point source radiating spherical waves
above a locally reacting impedance plane:

)= T Holka)Ai(, +2, /DA, +2, /1)
pS( ’ ) 1 ; Ta [Al(Tn )]2 - [Al. (Tn )]2 (19)
where 1, = (ki _ k(z))lz 20)

are the zeros of Ai'(t, )+qAi(t,)=0 21)

ka represents the horizontal wave number of the nth mode. The zeros of (21) are trapped in the
complex plane with an adapted Powell hybrid method for nonlinear systems solutions.

One must point out that this derivation is an exact analytical formulation but in the last
result the continuous spectrum contribution has been neglected, which leads to negligible
error at long range.

Besides, concerning the numerical implementation, a significant numerical instability gives
rise to some oscillations in the predicted sound field due to the oscillatory behaviour of Airy
functions for large arguments. This drawback is overcome assuming that near to the vertical,
sound speed gradients do not affect the propagation, so for small k, the propagation happens
as if the medium were homogeneous (see [19]).
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We can notice that the results for 2-D and 3-D excess attenuation match perfectly and are
very close to the measurement results.

4. THE NEW HYBRID MODEL: METEO-BEM

Using the results of both theories described above (BEM for noise barriers efficiency in
homogeneous atmosphere and Normal Modes for sound propagation in inhomogeneous
media), the hybrid formulation Meteo-BEM combining the advantages of both methods is
now presented.

For the sake of clarity, without loss of generality, consider the case of a rigid thin noise
barrier on a flat ground in the presence of downward refraction. In the homogeneous case eq.
(8) section 2 is rewritten as:

p(M)=Po M) [ Prnsem @20 GMP)I(P) VM€

But now, the Green's function describes the acoustic propagation in an inhomogeneous
medium, so the results of section 3 equation (22) are used:

i Z exp(ik,|iy — 5D AI(T, + 2, /Ai(T, +2) /1)
2 n kn'tn [Ai(‘tn )]2 - I.Ai' (Tn )]2 24)

Since the ground is rigid, the parameter q in (18) is equal to zero. So the equation (21)
shows that the T, are the zeros of the derivative of the Airy function called a'’, and finally:

(23)

G(S,M) = ps(r(M),z(M)) =



GES,M) = — exp(ik,Jry — AR +2, /DAIGE' +2u /1) 148

21 n kqa'y [Ai(a'n )]z @5

The new inhomogeneous integral equation corresponding to (11) must be solved with the
Normal Modes Green's function:

~3,pnpPoM)= PFLui...m (P)a, (e )C(M.P)IT(P) YMe T

(26)
The normal derivative of the pressure for the left hand side of this integral equation is:

_aG(SM)_ 1 explik, |rs)ai(a’,+2, /Ai(@'y +2p / 1)
Onapol)e =5, = =12 ', [aiGa, )P @7

For the right hand side, an approximation following the idea of Rasmussen [19] exposed
above in section 3 can be made considering that vertical propagation is weakly affected by
the refraction, so this term is at first approximated by the homogeneous term presented in
section 2.

So a new linear system involving the Normal Modes Green's function derivative for the
right member and the same matrix as for the homogeneous system equations (13) and (14) is

obtained:
[Ain hom I”‘m hom ] = [Bin hom ] (28)
[Bin hom] = [B jin hom] = [" anpoin hom m ,)]
with ) [p‘in hom] = [P'i.in hom] (29)

[Ainbom)= [A fiin hom]= [P-F j . an(M)an(P)G(M j’P)dr(P)] = [Apon]

L

The subscripts "inhom" and "hom" denote respectively propagation in inhomogeneous
medium and in homogeneous medium.

Once solved this new inhomogeneous linear system provide the layer density for
inhomogeneous media calculated using the same numerical schemes as in section 2.

The last step is then to use the direct formulation with the Normal Modes Green’s function
for the incident field as well as for its derivative involved in the integral in the same way as

for the left hand side of the inhomogeneous integral equation above.
The acoustic pressure is then computed at any receiver point using the following equation:

p(M) =Po (M)+ Ir‘p'in hom (P)an(P)G(M'P)dr(P)_

= Po(M)+ 3 i nnn@aeyGOM RIAT; (30)
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5. RESULTS

Calculations obtained from this new Boundary Element Method (Meteo-BEM) are
compared (figs.6 to 9) to results from experimental measurements made above a concave
surface indoors that simulates propagation under downward refraction in the case of a hard
impedance surface and in the presence of a barrier ([21] fig.2 and 3, and [4] figs.15 a, b, ¢).
Results about the acoustic field without sound barrier in the presence of downward refraction
/(Normal Modes) and with barrier in homogeneous medium (BEM) are also given. The source
height is for all cases 10 cm, and at a distance of 4 m from the sound barrier which is 15 cm
high. Ground and barrier are rigid. The receiver is respectively 1 m (fig.6), 2 m (fig.7 and 8)
and 3 m far from the noise screen. The receiver heights are 5 cm (fig.6), 10 cm (fig.7 and 9)
and 15 cm (fig.8). The radius of curvature R is 20 m.
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The results show that the Meteo-BEM model agrees very well with the experimental data.

6. CONCLUSION

In this paper a hybrid method for calculating the acoustic field in a medium with a sound
speed profile above complex boundaries has been presented. First of all, the theory of BEM
together with that of sound propagation in inhomogeneous media has been briefly recalled.
Each step of the work has been justified and validated. Then the new model Meteo-BEM has
been derived, using results of both theories. Finally in order to validate this innovative
approach, comparisons have been made with experimental results. The results prove that a
BEM can be adapted to complex atmospheric sound propagation problems using the adequate
Green'’s function and give good agreement with experimental data.

This hybrid method allows to calculate the sound field in a medium with a sound speed
profile above an uneven impedance ground provided that the non flat part of the terrain is
included in the integration domain ¢ of formulas (2)-(6). The influence of various diffracting
shapes of the sound barriers combined to meteorological effects on the acoustic field is going
to be studied. Other validations with more realistic configurations (finite impedance of the
ground for instance) are engaged. Investigations need also to be done in order to give insight
on physical phenomena in complex outdoor sound propagation. Besides, further work is in
progress in order to use the power of the Parabolic Equation for predicting range dependent
propagation in both conditions of downward and upward refraction. Other investigations are
pursued with other inhomogeneous models like the Residue Series for upward refraction, or
F.F.P. for both situations. Turbulence could also be included in such a formulation using the
adequate Green's function.
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Scale Model Experiments On The Insertion Loss Of Wide And Double Barriers And Barriers
Under Turbulent Conditions.
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ABSTRACT

The insertion loss of wide and double barriers is investigated through scale model
experiments. Such configurations and conditions are common in outdoor sound propagation
problems such as highway barriers and raised or depressed roadways. The Biot-Tolstoy-Medwin
(BTM) time domain wedge formulation for multiple diffraction [J. Acoust. Soc. Am. 72, 1005-
1013] is used to predict the acoustic field directly in the time domain for non turbulent
conditions. Evaluating the insertion loss at discreet frequencies is accomplished via the Fast
Fourier Transform (FFT). For the non turbulent conditions, comparisons between the BTM
model and other frequency based models will also be presented.

INTRODUCTION

The Federal Highway Department (FHWA) is in the process of introducing and refining a
new, state of the art, computational model to describe sound propagation near highways. The
motivation for the present work was to investigate the portion of the Traffic Noise Model (TNM)
that handles multiple diffraction to investigate its usefulness and to possibly suggest alternate
computational methods to address the problem of scattering by multiple barriers or terrain
features. An additional charge was to begin to investigate the effects of atmospheric variations
on sound propagation in an attempt to inciude these features in future upgrades of the model.

The diffraction model utilized by the TNM is that of De Jong et al. [1] The model was
found to be lacking for multiple diffraction problems and alternate computational models were
investigated for their suitability. A wide barrier model developed by Pierce [2] was investigated
along with an extension of a model developed by Medwin et al [3] Both models are capable of
handling a wide or three sided barrier while the latter is capable of handling arbitrary barrier
configurations. Therefore, the Medwin model was investigated further and the results are
presented here.

Biot-Tolstoy-Medwin Diffraction Model
The Biot-Tolstoy-Medwin[3-6] theory involves the introduction of a source strength, S,
such that the pressure at a distance R is given by

- PS¢
P= 4R (t%)
(1)
where o is the density of the propagating medium, and c is the speed of sound. The delta
function in Eq. 1 has a value of zero for all times except ¢ = R/c, where it has the value of 1.
Hence the propagating pressure pulse spherically diverges as 1/R and is proportional to the

source strength. This type of source lends itself easily to convolution, allowing transient sources
to be considered.
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Figure 1 BTM model wedge geometry: a) side view; b) top
(unfolded) view. Dashed lines indicate least time paths from
source to receiver.

The geometry is based in a cylindrical coordinate system where the z-axis extends along
the crest of the wedge, as shown in Figure 1. Source coordinates are given by ro, &, and z = 0;
receiver coordinates are given by 7, 6, and z. The wedge angle, 8,, is measured from one face of
the wedge through the propagating medium to the other face. For the thin plate, this angle is 27,
and such a barrier is referred to as a knife-edge barrier.

Receivers in the region where 8- < are said to be in the bright zone and receive both
the unobstructed, direct signal as well as the edge diffracted signal. Otherwise, they are in the
shadow zone and receive only the diffracted signal. In this region, the diffracted pressure is
given by Medwin [3,6]as
Spc B e~ 6

PO = e s T @
where
8= sinf(#/6_ Y(7x +60+6,)] 3)
1-2¢™ "% cos[(n /6, )(x £0+0,)]+e 7%’
and
¥ = arccosh -+t +2%) . @

2rr,
This expression is valid for times ¢ 2 7, where
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.= ,/(r+r,,)z + 22 )

is the least time over the wedge. Note that for = 7, Y is identically zero, and by Eq. 2, the
pressure is undefined. The numerical method for calculating p(? = ) is described in Appendix 1.A
of reference [7].

The + signs in Eq. 3 indicate that all possible combinations of source, receiver, image
source, and image receiver angles are considered. The £ factor in Eq. 2 is the sum of four values
which include paths from image sources and receivers located within the wedge. A more
complete discussion of these image contributions is found in Section 5 of reference [4]. The use
of the term image in this context should not be confused with similar terminology used later in
this work, where the term image is used in treating reflections by a rigid surface.

The impulse formulation can provide valuable insight into the relative contributions of
each arriving pulse. In addition, ray-tracing techniques allow comparison of distinct reflected
and diffracted components. It is often more desirable, however, to quantify the diffracted sound
field in the frequency domain. Although at this time no analytical transform of Eqgs. 2 to 5 have
been found, the frequency response is easily obtained by digital means. In order to represent the
diffracted field digitally, instantaneous values of Eq. 2 are calculated for discrete values of time.
The frequency content of the diffracted field is obtained via the Fast Fourier Transform (FFT).
The desired frequency range governs the choice of the discrete time step, A7, of the impulse
response.

This discrete, digital representation of the pressure diffracted by a barrier follows from a
classical Huygen’s wavelet description of the spherical wave. Secondary sources are defined at
interception points between the wavefront and the edge. The first secondary source, S.s0, is the
intercept of the diffracting edge and the least time path. As the wavefront propagates, secondary
sources on both sides of the least time path contribute to the sound field in pairs. The paths
defined by the positions of the secondary sources are referred to as partial least time paths, and
pulses propagating along these paths arrive at intervals of nAT. The complete time-domain
waveform is composed of N points whose values are written as p(nA7).

Insertion Loss
The quantity of interest in this work is the insertion loss defined here as

= Phbardier | _ P2

IL = 20i0g G0} = 20008 3)
(6)

where p; and p, are the pressures as a function of frequency before and after inserting the object,

respectively. Many authors insert a “-* sign to make the insertion loss a positive quantity. In

this work we chose to keep the format consistent with that used by Medwin et al.[3,6] since we

compare to his work. The reference pressure, p1 is the total field which includes ground bounces

and acts to give a more realistic depiction of barrier losses for a given geometry.

When a single knife-edge barrier is placed on a rigid surface, four ray paths from the source to a
receiver in the shadow zone are possible. Throughout this work the symbols ro and r refer to the
source-edge distance and the receiver-edge distance for one ray path, including paths with image
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sources and/or image receivers. The diffracted signal for each ray path is calculated
independently using the method described above and then superimposed.

For the single knife-edge barrier, the agreement between the DeJong, Pierce and BTM
models is excellent although this data is not presented for the purposes of brevity. The
comparison can be found in reference [7].

Multiple Diffraction
Multiple diffraction effects are easily handled by the BTM model in the context of the

classical Huygen’s Principle. These effects must be considered when predicting the insertion
losses of thick and/or multiple barriers. Although the wide barrier has been addressed by
Medwin et al.[3], it is reexamined in the presence of a rigid ground surface. In addition,
diffraction over double knife-edge barriers of various widths is investigated.

The double diffraction method treats each diffracting edge independently. Each
secondary source along the first edge in turn radiates a new, weaker pulse which then diffracts
over the second edge in the same manner as the first. Although similar, the calculations used for
the wide and double knife-edge barriers have a few subtle differences; therefore the two barriers
are addressed separately. The BTM model does not require that the diffracting edges of the
barriers be parallel, nor does it place any stipulations on the relative heights of the two edges. In
this discussion, however, the barriers’ edges are parallel with constant width W and of the same
height » in order to minimize the logistical difficulty of the corresponding experiment.
Furthermore, the source-receiver axis is normal to the z-axis in all cases.

Cartesian coordinates are used to conveniently give the locations of the source and
receiver throughout this discussion. For both the wide and double barrier, the origin of the
cylindrical coordinate system depends on which edge is being treated in the double diffraction
method. In the Cartesian system, used only for measurement convenience, the origin is placed at
the point of contact between the first diffracting edge and the ground surface. The case of the
double knife-edge barrier is illustrated in Figure 2. The conversion is the same for the wide
barrier.

Figure 2 Conversion from cylindrical to Cartesian coordinate
system for the wide or double knife-edge barrier. The origin of the
Cartesian system is at point O.
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Wide Barrier Diffraction

A typical wide barrier geometry is shown in Figure 3. Like the single knife-edge, there
are four possible paths from source to receiver. Each of these paths includes two diffracting
edges at points 4 and B. Diffraction effects beyond double diffraction (e.g. path SABABR) were
neglected.

Figure 3 Typical wide barrier geometry showing four ray paths
SABR (the least time path), SCABR, SABDR, and SCABDR.

Figure 4 illustrates the double diffraction technique. The wide barrier is extended to form
a single right-angle wedge, and a virtual receiver is placed at coordinates (7', &, 0) where ' = W
+r and = 6, = 32/2. Using Eqgs. 2, to 5, N values of p(nAT) are calculated at the virtual
receiver. The fractional strength of the 0™ secondary source, S:, is then determined.

a)
ro

source

b) <) S,,_,, ]

|
source ' receiver
]

X
§ receiver
L

Figure 4 Wide barrier double diffraction method. a) Placement of
virtual receiver, side view. b) The nth partial least time path, top
view. The least time path is shown as the thin dashed line. c¢)
Diffraction over the second edge from the nth secondary source,
side view.,
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This source strength is simply S,0 = FoS, where
0A
F,=20aT) @)
Pso

The value of pso gives what the pressure “would have been” at the virtual receiver had the pulse
originated from the 0% secondary source location, and is given by
Sp
= , 8

Psy 27R AT ®
where Ro = W + r. The factor of 2 in the denominator of Eq. 8 replaces the usual factor of 4 for a
point source due to pressure doubling at the face of the wedge. Subsequent secondary source
strengths are calculated in pairs as S;;, = F,S, where

F = 1p(AT)

n 4]
2 pb'.n
and
__5p
p&,n - 27d{nAT (10)

for R, = [(W + r)* + 2,"]'>. The expression for z,, the location of the nth secondary source along
the z-axis, shown in Figure 4, can be found in Appendix 1.B of reference [7]. Contributions
from secondary sources cumulate until the cut-off criteria is met.

F, = S;"' <0.5% (11)

This cut-off criteria (also uséd by Medwin et al. in reference [3]) defines N,,, the value of 7 when
Eq. 3-10 is satisfied. Once these secondary source strengths have been found, diffraction over
the second edge can be treated.

A second right-angle wedge is formed as shown in Figure 4c, such that each secondary
source has coordinates (ro’, &', z,) where ro' = W and &' = 0. Again using Egs. 2, to 5, N,
individual waveforms are obtained and added arithmetically at the appropriate arrival times to
give the final pressure signal due to that ray path. These steps will be repeated to yield four
individual signals, each corresponding to one of the ray paths shown in Figure 3. The
superposition of these four signals gives the total impulse response for diffraction over the wide
barrier. A typical time domain impulse response for a wide barrier is shown in Figure 10

Double Barrier Diffraction

In order to facilitate comparison of the wide and double knife-edge barriers, both plates
of the double barrier are of the same height and are separated by width #. The same basic
technique as described in the previous section is applied to the double knife-edge barrier to
calculate the effects of double diffraction. However, since the double knife-edge barrier consists
of two plates rather than a solid object, several distinct differences arise.

For both diffracting edges, the wedge angle used in Eqgs. 2, to 5 is 27 rather than 3272.
An additional ground bounce in between the two plates is introduced to each of the four ray
paths of the wide barrier, effectively doubling the number of possible ray paths to eight. These
ray paths are shown in Figure 5. Internal reflections between the two plates are neglected, as are
multiple diffraction effects beyond double diffraction (e.g. path SABABR).
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Figure 5 Typical double knife-edge barrier geometry showing
eight possible ray paths S4BR (the least time ray path), SCABR,
SADBR, SABER, SCADBR, SCABER, SADBER, and SCADBER.

The coordinates of the virtual receiver and secondary sources depend on the path taken.
Paths that include the ground bounce use a virtual receiver at coordinates (7, &, 0) where r’ =
[Wa +(2h)2 ]I’2 +r and @ = 2x - arctan(W/2h) and secondary sources at (ro’, &', z,) where r¢’ =
[#? +(2h)* 1* and @' = arctan(W/2h). Paths that do not include the ground bounce have
secondary source and virtual receiver coordinates that are the same as those of the wide barrier
with the exception of &', which is 772.

In using Eq. 8 and Eq. 10 to calculate the secondary source strengths, the effect of

pressure doubling at the virtual receiver is no longer applicable. Spherical spreading takes its
usual form with

Sp
= 12
Pso 4RAT (12)
and
Sp
= . 13
p5,’l 4 R’.AT ( )

Table 1 shows a summary of the differences between the double diffraction techniques for the
wide and double knife-edge barriers.



Table 1 Summary of differences between double diffraction
techniques for the wide and double knife-edge barriers.
Double
. Knife-Edge Barrier
Wide ) I
Barrier no internal with internal
ground ground
bounces bounce
B 372 2r 2z
# of ray paths 4 8 8
2 1172
virtual Wr wer | il
receiver CP
coordinates @& 372 3n2 arctan(W/2)
Sp Sp Sp
Pan 27R,, AT 4nR AT 4nR AT
secondary  r, W w [#2 +2h)* 112
source
coordinates &’ 0 w2 arctan(W/2h)
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A typical time domain impulse response for the double knife-edge barrier, in which eight distinct

arrivals can be observed, is shown in Figure 12

Comparison of Models
As with the single knife-edge barrier, the BTM double diffraction method for the wide barrier
was compared to the models of Pierce and De Jong. Like the case of the single knife-edge
barrier, the BTM and Pierce wide barrier models agree quite well. Figure 6 shows this
agreement for the case of a 20cm thick barrier normalized to the total field.
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Figure 6 Insertion loss, normalized to the total field, of a wide
barrier as predicted by the BTM and Pierce models.
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The De Jong model for double diffraction, however, had significant discrepancies which were
attributed to phase mismatches between the direct and image sources. [7]

While the Pierce model is well suited to predict muitiple diffraction effects, it requires
adjacent diffracting edges to have a common side plane. This configuration is often referred to
as a three-sided barrier in the literature. In Section 2.2.2 of reference [8], Salomons offers a
heuristic modification to Pierce’s model in which diffraction effects from an arbitrary number of
edges can be calculated without the common side plane requirement. Salomons further states,
however, that by using this modification, discontinuities occur in the resulting spectrum and can
be avoided only by limiting the calculation to a fixed frequency. This shortfall is overcome by
the BTM impulse formulation which gives a continuous broadband response through a
transformation of the time domain.

Experiment
Experiments were conducted in a well-controlled indoor environment. The source was

an electric spark and the receiver was al1/4” B&K microphone. Time domain data was captured
for surface with and without barriers and windowed to avoid unwanted reflections and
diffractions from walls and surface edges, etc. The time domain data was Fast Fourier
Transformed to investigate the insertion loss in the frequency domain. A sketch of the
experimental geometry is presented in Figure 7 for the double barrier experiment. Similar
geometries were used for the single and wide barrier geometries

steel
plates
N AC grade
pine plywood

separator /
¥

L__%/ | L 4&

C low grade
spruce /L pipe pine rails
braces clamp

Figure 7 Configuration of surface and barrier materials.

Barrier Measurements

Five similar configurations were tested and for each configuration the three types of barriers
were compared by keeping the pre-insertion range from source to receiver constant (120cm) and
placing the barriers such that the centerline of each was in the same location. The primary
variation among the five configurations was the width, , of the wide and double knife-edge
barriers. Configurations for the single knife-edge were determined by adding half the value of W
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to both x; and x,. The graphs to be presented correspond to one of the geometries in which, for
the wide and double barrier configuration, xs = 50 cm, ys = 15 cm, xr = 70 cm, yr=20cm, h=
3.7 cmand W =24.2 cm. For the single barrier, W = 0 and xs and xr are adjusted accordingly to
keep the centerline in the same location.

Single Knife-Edge Barrier

This section presents data for two experimental configurations and the corresponding
BTM predictions, both in the time domain and in the frequency domain. The time domain
impulse response in Figure 8 shows excellent agreement between theory and experiment with
minor exceptions. The first is the slight discrepancy between the predicted arrival times of the
pulses following ray paths including ground bounces. This could be due to (1) an error in the
speed of sound used for calculations, (2) an improper placement of the source and receiver
and/or (3) a slight warping of the plywood surface. The latter effect could cause the effective
barrier height to change along the z-axis.

The second exception is a very weak arrival at ~5.3ms for the two configurations shown.
Geometrical analysis confirms that this pulse, shown by a “?” in the figures, is not backscatter
from the edges of the plywood surface or diffraction from the side edges of the steel plate. Most
likely, it is the result of reflection(s) from the acrylic structure of the spark source or from the
ring stands and clamps used to support the source and receiver. These extraneous “sources,”
present in all five data sets, are believed to be the primary source of error in the insertion loss
analysis.

In the insertion loss data presented in Figure 9, excellent agreement is found from 2kHz
to ~10kHz. Beyond 10kHz, the curves appear slightly shifted although the general trends of the
two curves are very similar. This condition can also be seen for both the wide barrier and the
double knife-edge barrier.

Relative Pressure

3 35 4 45 5 55 6
Time (rs)

Figure 8 Single knife-edge barrier impulse response. BTM
prediction (thin line) and experimental data (thick line).
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Figure 9 Single knife-edge barrier insertion loss. BTM prediction
(solid line) and experimental data (hollow dots).

2. Wide Barrier

As with the single knife-edge barrier, both the time domain and insertion loss results for
the wide barrier are presented. Not surprisingly, it is found that the wide barrier generally gives
an improved insertion loss (i.e. lower sound level) as compared to the single knife-edge barrier.
This improvement is especially seen at frequencies whose wavelengths are comparable to the
thickness of the barrier. By blocking certain destructively interfering ray paths, however, the
wide barrier can actually be less effective than the single-knife edge barrier at some frequencies
when normalizing by the total field.

The time domain traces comparing the BTM prediction to the experimental data, is
shown in Figure 10. The corresponding insertion loss curves are shown in Figure 11. Again,
there is good agreement between the BTM model and the experimental data. The shift of the
data from the BTM prediction, observed at frequencies above ~10kHz for the single knife-edge
barrier, is less pronounced for the wide barrier.
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Relative Pressure
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Figure 10 Wide barrier impulse response. BTM prediction (thin
line) and experimental data (thick line).
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Figure 11 Wide barrier insertion loss. BTM prediction (solid line)
and experimental data (hollow dots).

Double Knife-Edge

A further improvement in sound level mitigation is observed for the double knife-edge
barrier, as compared to the wide barrier. Figures 12 presents the impulse response for this
configuration. It is more difficult, however, to distinguish individual pulses arriving later in time
due to the abundance of source clutter. In addition, the discrepancies in the relative amplitudes
of the individual diffracted pulses are much larger than observed in either the single knife-edge
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barrier or the wide barrier. The double knife-edge barrier insertion loss data is shown in Figure
13.

Relative Pressure

35 4 45 5 55 6 65
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Figure 12 Double knife-edge barrier impulse response. BTM
prediction (thin line) and experimental data (thick line).

IL re total field (dB)
8 5
)
, A4°
|
I
b

2 4 6 8 10 12 14 16 18 20
Frequency (kHz)

Figure 13 Double knife-edge barrier insertion loss. BTM
prediction (solid line) and experimental data (hollow dots).

It is intriguing to note that the insertion loss of the double knife edge barrier is
systematically 2 to 3 dB lower than the wide barrier and the difference is independent of
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frequency. This relation can be more easily seen in Figure 14 where the insertion loss for a
typical model geometry, given in Table 2, is presented for the knife edge, wide and double
barriers. This finding suggests that 1) The added 4 ray paths in the double barrier geometry are a
negligible contribution to the problem, 2) it may be possible to reduce the number of calculated
ray paths to certain key ones 3) the principle cause of the difference is the change in wall angle
from 270° to 360°. These last two findings may open avenues for quick empirical optimization
algorithms.
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Figure 14 Insertion loss curves for the single knife-edge, wide, and

double knife-edge barriers.
Table 2 Geometry used for Figure 14
source receiver
coordinates coordinates h w
Xy Vs X, Vr (cm) | (cm)
(cm) |(cm) |(cm) |(cm)
Single Kanife- _
Edge Barrier 50 15 70 20 30
Wide and
Double Knife- | 40 15 80 20 30 20
Edge Barriers

CONCLUSIONS
Diffraction effects on various configurations of acoustical barriers have been
investigated. Barriers that have two diffracting edges were the primary focus of the research. A
rigid ground surface was also included in the investigation in order to study interference patterns
that can result from various possible ray paths. The De Jong, model, Pierce model and the Biot-
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Tolstoy-Medwin (BTM) model were investigated for their ability to predict the diffracted sound
field associated various barrier configurations. These predictions were initially compared to data
found in the literature and it was determined that the Pierce and BTM models could properly
account for multiple diffraction effects over wide barriers. The Pierce model is not properly
posed to handle arbitrarily separated barriers, such as the double knife edge, so the BTM model
was extended and examined in greater detail in the hopes that it might provide an alternate
solution for arbitrary configurations of multiple barriers.

In conjunction with the modeling efforts, a series of scale model experiments were
conducted to verify the usefulness of the developed model and to provide a data set for future
models if needed. While agreement between the BTM model and the experimental data was
quite good the model may have limited value as an alternate solution for diffraction effects in
noise prediction software. At present it is too computationally prohibitive and its time domain
formulation may not mix well with other models that handle other propagation features such as
impedance effects and vegetation.
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ABSTRACT

A 3-D version of the "Green's function parabolic equation" (GF-PE) is used to
investigate horizontal coherence of the acoustic field versus cross range and height at a
distance of 1 km from a point source. The purpose of the investigation is to assess the
feasibility of using long (10 m to 100 m) elevated horizontal arrays to beamform on the
acoustic field of a distant source. The cross-range correlation function for daytime
propagation (upward-refracting) is computed at a range of 1 km for array heights of 0 m,
25 m, and 100 m, and for frequencies of 50 Hz, 100 Hz, and 200 Hz. If is found that, at
50 Hz, beamforming is possible at all three heights. At 100 Hz, beamforming can
possibly be done at 25 m and 100 m, but not on the ground. At the highest frequency
investigated, 200 Hz, beamforming appears to be feasible only at the greatest height, 100
m. Hence, it is apparent that, for daytime beamforming to be feasible, technological
advances are badly needed that will permit acoustic sensing at greater heights than is now
possible with ground-based microphones.

L INTRODUCTION

For many years, long horizontal arrays have been used in the ocean to usefully
beamform on distant sources. In the ocean, the use of long horizontal arrays at substantial
depths is relatively easy due to Archimedes' Principle: ships float on the surface and
hydrophones sink. In atmospheric acoustics, because of the difficulty of making
measurements at any significant height, almost all measurements have been made near
the ground. In the daytime, because of upward refraction and scattering from turbulence,
the acoustic field near the ground has little coherence [Havelock et al., 1995; Di and
Gilbert, 1997; Gilbert and Di, 1998]. Consequently, long, near-ground horizontal arrays
have limited use as a means for locating the bearing of a distant source. It is well known
in atmospheric acoustics, however, that the coherence of the sound field increases with
height above the ground. [Havelock et al., 1995; Di and Gilbert, 1997, Gilbert and Di,
1998]. Hence, in this paper we investigate the possibility of useful beamforming with
long, elevated horizontal arrays. Methods for deploying such arrays are beyond the scope
of the present paper and, consequently, are not discussed here.
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II. THEORY AND COMPUTATIONAL METHODS

The model used for the 3-D propagation calculations presented here is an
extension of a 2-D model known as the "Green's Function Parabolic Equation” (GF-PE)
model [Gilbert and Di, 1993]. The 3-D GF-PE method, which has been reported recently
[Diand Gilbert; 1997, Gilbert and Di, 1998], computes the acoustic field of a point
source in a "pie-slice" region with periodic boundary conditions imposed on the straight
sides of the slice. The geometry of the computational domain is indicated by the 3-D pie-
slice shown in Fig. 1. On the bottom of the pie slice, a finite impedance boundary
condition is used, where the normalized value of the impedance is Z . At the top of the
pie slice, an artificial absorptive "sponge" is used to elimination spurious reflections from
the top of the computational domain. Because periodic boundary conditions are imposed
on the two straight sidewalls of the pie slice, acoustic energy going out one side of the pie
slice reenters on the opposite side. The motivation for using periodic boundary conditions
is the need for a numerically tractable method that conserves energy and preserves the
statistical properties of the scattered acoustic field. The azimuthal angle of the pie slice
shown in Fig. 1 is given by &, where & can be any value from 0° (2-D calculation) to 360°
(a full 3-D calculation). For the sake of computational speed, in calculations done thus
far, & has been limited to a relatively small angle, 11.5°. Within the pie slice itself, the
usual out-going wave propagation condition is assumed.

a. Mathematical formulation

The following is a brief description of the 3-D GF-PE formulation. We start from
the 3-D wave equation for acoustic pressure P,

a*p o*p 7P ,
+ + +k*(x,y,2)P=0
&2 @2 &2 (1)

where k(x,y,7) is the wavenumber. In a cylindrical coordinated system, (r, ¢, 2), a scaled
variable ¥ = Jrp is introduced to replace the acoustic pressure, P. Substituting

P=¥/Jr imo Eq. (1), and applying the usual far-field approximation, we obtain a far-
field 3-D wave equation,

Y ¥ v ,
+ + +k°(r,@,2)¥ =0
a* rop* &t @)

The one-way, outgoing-wave equation corresponding to Eq. (2) is given by,

¥
o o Ve¥ @)
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where

Q'EJ&Z Za 2 +k2(r ¢7z) J r +k2 'l'-(k2 kz)

o? o? 2
=~ ?-i- —r ———+ky +(k-k)=0Q+(k-k,)
4
and &k ) is a reference wavenumber.
The formal solution of Eq. (3) is,
¥ (r + 4r) = explidr(k - k,))exp[idr QT () 5

which, written in explicit form, is given by,

- l Y ¢ ] (] (] 1]
¥ (r +4r,p,2) = explidr(k — k,)|— [ e*“ i [rdg' [ d2'G(x,2,2.,0,0', 1 (r,0',2)
C 0 0

(6)
where C is a contour integral enclosing the spectrum of the Green's function, G. The
Green's function itself is the solution of the following boundary value problem:

*G  9°G 2
+ +k}G=-6(z-2 -ry' 20 7
Z 0oy ky (z-2')0(rp -ro") z (7

where kr is the transverse wavenumber. The boundary condition at z=0 is G/ = -ifG,
where f=k /Z 2 and Z‘r is the normalized ground impedance. With the periodic boundary

condition G(¢ + &) = G(4), the explicit solution for the Green's function is,

1 & T el*:(:-z')#—m(w') | e lk,(z+:‘)+lgm(¢-¢')
— dk, +— R(k } dk,
] ,,Z_‘, 2rm : s 27
_ka2+(5 2 _p2 2720 e, kf+(—ﬂ)2—kf.
' i ®
2 ,8 - -iﬁ(z*r:‘HEls(w')

"‘“‘”ﬁ2+( ) -k
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where k; is the vertical wavenumber and m is the azimuthal modal rank. By substituting
the explicit form of the Green's function into Eq. (6), we arrive at the final formulation
for the 3-D GF-PE:

k) = p2x @ S e ‘/--ﬂ”
W(r+dr,p,z) = ezz& Z eiaw{jeu‘dkzj‘e 5 Wd¢'ew o5 F ')’Ie"""'dz!?’(r,cp',z')
me—-o -m [ o
@ § i, _p2_(ZEmy ,
+ Rk [ 5 ape VST [ereap r,90,2)
- 0 [+]
g3 ﬂ & _2‘ N @
+ew‘ljg £ '(5 'fj'e ’T"d¢.4’d&-lﬁje-lﬁdz?(r’¢a,zu)}
1] /]
&)
where the reflection coefficient R is given by,
k -
R(k,) = .J (10)

k. +8

As in the 2-D version of the GF-PE, the final solution for the 3-D GF-PE in Eq.
(9) consists of three terms, each having a clear physical interpretation: the first term is the
direct wave, the second term is the specular reflection, and the third term is the surface
wave. Equation (9) is used below to investigate horizontal coherence of the acoustic
field versus cross range and height at a distance of 1 km from a point source

IL RESULTS OF A NUMERICAL INVESTIGATION OF COHERENCE

To provide some physical insight on the 3-D structure of the acoustic field from a
point source, we present here gray-scale plots of the down-range and cross-range acoustic
levels at 50 Hz, 100 Hz, and 200 Hz. In addition, we show the cross-range, two-point
correlation function at selected heights: 0 m, 25 m and 100 m. The source height is 1 m,
and the ground is taken to be rigid (Z_ = ). The mean sound-speed profile is upward-
refracting and is shown in Fig. 2. Realizations for the turbulent part of the sound speed
are generated using a homogeneous, isotropic, 3-D Kolmogorov spectrum with random
phases for each of the Fourier components. The azimuthal angle of the pie slice, &, is
11.5" in all the calculations.

Since the results given here are for a particular mean sound-speed profile and a
particular turbulence model, one should use care in extrapolating the conclusions to other
atmospheric scenarios. Nevertheless, from the results shown, it is clear that significant
performance improvements can be expected with elevated horizontal arrays.
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a. Visualization of the 3-D acoustic field

Figures 3 and 4 show, respectively, a single realization of the down-range and
cross-range variation in the relative sound-pressure level for a point source obtained
using the inputs described above. In Fig. 3, the geometric (ray) shadow boundary is
approximated by the gray-scale plot at 200 Hz. At lower frequencies, the geometric
shadow is partially filled by diffraction, with significant levels near the ground at the
lowest frequency, 50 Hz. Although "snapshots" of the down-range variation of the
acoustic field provide useful information on the effect of upward refraction in the
presence of turbulence, they provide little useful information on the important issue of the
cross-range correlation. To address the issue, we present, in Fig. 4, gray-scale plots of the
cross-range levels at 50 Hz, 100 Hz, and 200 Hz. At 50 Hz, the field is relatively uniform
horizontally, showing that, at S0 Hz and a range of 1 km, turbulence effects are small.
There appears to be only a little focusing or de-focusing of the nearly spherically
spreading acoustic wave. Near the ground, there is some noticeable horizontal variation
of the field and a few "dead spots"” due to de-focusing of the field. Above about 75 m,
the field is uniform except for a few small white "hot spots" due to focusing of the field.
At 100 Hz, focusing and de-focusing of the acoustic field has generated significant
patchiness in the field over the whole height shown (0 - 200 m). Notice, in particular, the
large hot spots (white) where the level is about 10 dB above spherical spreading. Even
though the field is patchy at 100 Hz, the patches are large enough above 20 - 30 m to
maintain significant horizontal correlation in the field. Near the ground, in contrast, the
patches are quite small and there is no noticeable correlation except over distances of a
few meters. At the highest frequency, 200 Hz, the field has broken up into a myriad of
patches of all sizes. At a heights greater than 75 m, the patches are large enough that one
can still distinguish high intensity regions with dimensions of many 10's of meters.
Below 75 m, the field quickly breaks up into patches of only a few meters.

b. Two-point horizontal correlation function

In this section, to augment the above "patch-ology" discussion with a quantitative
measure of cross-range correlation, we present in Fig. 5 the horizontal correlation
function versus separation distance at heights of 0 m, 25 m, and 100 m, computed with
the average over S0 realizations. Essentially everything shown in Fig. 5 is consistent with
the qualitative discussion of Fig. 4 in the previous section.

At 50 Hz the horizontal cross-range correlation function is above .9 at all
frequencies, with the higher values associated with the greater heights. Thus, for
beamforming at 50 Hz, there appears to be little advantage to using elevated sensors.
Except for special sources such as helicopters, however, one cannot expect significant
energy at such a low frequency. At more common frequencies, such as 100 Hz and 200
Hz, Fig. 5 shows that near-ground beam-forming at 1 km may not be feasible. At 100 Hz,
one could possibly construct a useful beam using two 25 m towers to support a horizontal
array. At 200 Hz, in contrast, the field is reasonably coherent only at 100 m. Since 100 m
towers would not be mobile, remote sensing at 100 m would require technology that is
not readily available at present.
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c. Physical explanation of daytime horizontal correlation

The essential features of Figs. 4 and 5 can be understood in a simple way.
Consider the acoustic field to be the sum of two components: (1) a fairly strong, coherent
field that is composed of small-angle components generated by upward refraction
together with diffraction into the shadow zone; (2) a fairly weak, incoherent field that is
generated by larger-angle scattering from turbulence. Although both fields are present at
all heights and all frequencies, the degree of coherence is governed by the relative
contribution of each component. At 50 Hz, for example, the total field is dominated by
field number one, so that the acoustic field has substantial coherence at all heights. As the
frequency increases, the shadow boundary approaches the geometric boundary, so that
near the ground, the field is dominated more and more by field number 2, which because
of its source, stochastic scattering, is inherently incoherent. Thus, as one progresses from
50 Hz to 200 Hz, higher and higher altitudes are required to sample field number one,
which is the more coherent component. Clearly, as the frequency or range are increased,
the simple model proposed here will break down, since field number one will become
more and more incoherent and finally reach "saturation." At saturation, the field has
reached its maximum complexity and generally has a small but stable coherence length
[Flatte' et al., 1979]. Under such conditions, beamforming with long horizontal arrays is
probably not feasible at any height.

IV. CONCLUSIONS

The numerical investigation of horizontal coherence presented here indicates that
beamforming with long, elevated horizontal arrays is feasible provided that, at a given
range, the frequency is low enough and the horizontal array is high enough. At 50 Hz and
a range of 1 km, for example, useful beamforming was possible at any height. At 100 Hz,
the study indicated that useful beamforming should be possible at heights above about 25
m. At the highest frequency investigated, 200 Hz, useful beamforming required a height
of 100 m. Measurement of the acoustic field at such heights is not easily done with
presently available technology.

Finally, we point out the need for field measurements to test the model predictions
given here. Although measurements with elevated sensors remain problematic, plans are
underway for cross-range, two-point coherence measurements at considerable heights,
hopefully up to 300 m.
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Introduction

Examination of a typical full field prediction for a vertical atmospheric section often
shows that most of the SPL variation occurs in the bottom 100 - 300m for a low
frequency source. This variation in level is due to the complex interaction of the
refracted field with the ground reflected field. Higher up in the atmosphere the variation
in level is much smaller with height, z, and it would seem possible therefore to consider

using large z intervals at these locations in a numerical solution scheme.

The use of a variable vertical mesh interval is not new. Gilbert' used a finite element
formulation for the z dependent operator in his PE which allowed a variable vertical
mesh. Close to the ground, where the field is most complicated and where the spatial
scale of the pressure variation is very small, Gilbert used tiny intervals in z. He increased
these intervals gradually with z, but only up to a maximum of Yard of a wavelength, A/3.
This limit was set by the need to maintain an error free solution with no accumulated

error at each range step.

A great deal of progress in using large range, x, steps has been made in the last few
years. Most noteworthy is Gilbert and Di’s GF-PE? and Sack and West’s LP-PE?, both
procedures allowing the use of massive x steps typically up to 100 A. In the GF-PE very
accurate solutions are obtained at the selected coarse range steps by computing the z
dependent Green’s function. In the LP-PE the accuracy of the calculation at each range
step is enhanced by using the LP expanded operator with its set of Padé terms. The LP-
PE also makes use of a sub-range structure to ensure stability and minimise errors where

the propagation is not mainly in the x direction.
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The success of the above large range step models depended on the use of new
formulations of the z dependent operator to give much more accurate solutions at each
chosen range step. They both however implicitly assume that changes in the modulator,

@, solution over a coarse range step are small.

If we are to construct a coarse z step algorithm we must therefore find a means of
improving numerical accuracy. In this paper novel procedures for doing this, based on
addition of a new z dependent carrier function, \¥,, are presented. The total potential is
then

¥(x, 2) = Py(x) ¥,(2) o, 2) 1-1)

and we retain the original x dependent carrier, ¥ (x) = e,

In the first versions of the new LVS-PE we used a co-ordinate transformation which
allowed the PE algorithm to operate with equal intervals in the transformed domain. This
was thought to be necessary for formulation of a stable PE algorithm. By using
improved discretisations of @ and its z derivatives however, we found that the co-ordinate

transformation could be avoided.

Derivation of the Modulator Wave Equation (MWE) for a Potential Containing a
Matched Vertical Wave Carrier (MVWC)

We substitute the potential in (1 - 1) into the two dimensional Helmholtz equation in the
usual way* and noting that ¥, itself satisfies the Helmholtz equation we get the MWE

&0 . O _ -_";
?+2zko.§+ch-O 2-1)

-

where L is the z dependent operator given by

_ & . 0 2 2, .
L-?+21¢=(z)a+(k2—ko—<D,+txd>z) 2-2)

€)
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and

oY FY
=1 /¥; O =—'/i¥ 2-3)
oz = oz

H

Our first choice of a MVWC was an exponential, ¥, = exp (i k, z), so that &, =k,
% = 0 with k, selected to match the vertical wavenumber for a source at a "representative"

location. In order to produce a soluble PE the coefficients of L must be constants.

Co-ordinate Transformations

Whatever transformation we choose, (x, z) = (£, 1), we must ensure the resulting PE
remains soluble. Here we only need to transform the z to n. For the PE to retain its
original form the coefficients of L in the transformed MWE (see below) must still be

constants.

Exponentially Increasing z Step

The transformation is chosen here to allow z steps which rapidly increase as we move
upwards starting from very small steps close to the ground. The 2D co-ordinate

transformation is

E = x; n=len[“z°] G-1)

The z steps will increase exponentially with 7, Az = z, €™ (&*" - 1).

The parameters € and z, are set to give Az values which start small near the ground and
increase rapidly with height such that over each Az interval the change in ¢ is always
small even for the largest intervals (for example choose An =1, € = 0.1 and z, = 0.01
so that for n = 1, Az = 0.02m and for n = 100 Az = 380m).
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We can obtain all the derivatives of ¢ in x and z appearing in (2 - 1) and (2 - 2) now in

terms respectively of derivatives in € and n:

dp _ 1 dp . &g

1
= = = e TS S T S B-2

%z Z, m
where here
Z = __ = Z,=__ =g (3'3)
This transformation turned out to be very unsatisfactory not allowing sufficient control
over the Az values - Az had to be far too small close to the ground to set up a reasonable
value higher up.

Arctan Function for Az

We choose a z transformation here with a more gradual increase in Az with 1} (and z)

%y ey | MM 3-4)
a,n m b W

Taking An = 1, = Az

o
s

The parameters V,,, V,, n; and W are set up from
(1) TNop the largest n; Ny = 7yop/2

(2)  Zrop the largest z; V,, = z1op/Mrop
(3) Az, the smallest Az close to the ground

4 Az, the Az at | = n1op/4.

From items (3) and (4) we can obtain an equation in q = 11;/2W, f{q) = 0, whose root can

be found using a Newton - Raphson procedure. This allows us to obtain W and from
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item (3), V,. Equations (3 - 2) are applicable in this case but here Z, is given in (3 - 4)

and Z, is obtained by differentiation of (3 - 4) with respect to .

This transformation was much easier to use than the exponential one and allowed a

sensible variation of Az.

Transformed Modulator Wave Equation

We replace the derivatives in (2 - 1), which can be expressed in terms of the transform

variables € and 7, using (3 - 2).

@.+2iko%g+L<p=0 @-1

oe?

The operator L is now 1 dependent and can be written

& d
L= 2. 2. 4-2)
a(n) p= B(m) o ()
with
1 2i0, Z,
a=—=; B=—=-—=;
Zi 4z (-3

Y=k -k - @+ yO,

We obtain the second order accurate wide angle PE from (4 - 1) using the procedure
described in detail in references 5 and 6. We integrate over a range step £ = ato
£ + AE = b replacing 8¢/0t by iL()/2k, which gives an equation containing a sum of
three integrals

Iﬁﬂ[bw"’dé; ID=BFQ’(I)d§; I,=7f<pd§ -4
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where

e

(p(”) =
on"

These integrals are evaluated as a linear combination of ¢® at the ends of the interval.

From references 5 and 6 we can show

I = %85 (o0 (q) + ¢ (3) )

@ 2
=B @) -5

I, = 2% (0@ + o®) )

The vertical operator L can then be discretised in 1 in the usual way’ allowing the core

PE matrix-vector equation to be written

L(b) ¢®) = L (a) 9(a) -6
where
L= & 5. B s 2ik 4-
u:t Aﬂz A‘r| + Y + a 0 ( 7)
and
ut=_i-__§., + for b, - for a @4-9
2k, 2
82 = me] - Z(P,,, + (Pm-l ? 8 = (pmd - (Pm (4-9)

Ifa— 1, — 0and k, =0 (4 - 6) is a standard wide angle CN-PE with A — Az and

n-z

Ground Boundary Condition

At z = 0 we can apply the normal impedance condition
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o¥ .
-a?.z!o=zk° B, ¥ -1

where B, is the normal admittance of the ground. Replacing ¥ with (1 - 1) gives

oo

= ik - i 5-2)
0z :2e0 ik, B, :

when the vertical transformation is applied (5 - 2) becomes

% | =2, ( ik B, - i®,) 5-3)

n=0

This has a similar form to the original flat ground boundary condition and is easily

incorporated into the matrix vector equation (4 - 6) when discretised (see reference 7).

Upper Boundary Condition

In order to obtain approximate Sommerfeld radiation conditions we have shown (see ref.
7) that for the untransformed CN-PE, if the top of the computational mesh is located at

Z = z, then

(PMd = zf(pu -.fz(pu-l (6 = 1)
with
f = oiksind.Az
We can show similarly that when we have our z dependent function; ‘¥, present then
(6 - 1) still applies but now

f= RCREAY 6-2)

The boundary condition in (6 - 1) refers only to the z dependence and maintains a
Sommerfeld radiation condition at the upper boundary for the z dependent part of the
solution. For still air conditions or when the sound speed gradients near the upper

boundary are small this condition works well. Under more severe meteorological
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conditions the above condition can give spurious upper boundary reflections. These tend
to increase in magnitude with range. Since we are dealing with only a z dependence in

the above equations the transformed version is obtained simply by replacing Az by An.

Appraisal of the Prototype Algorithm

The program was run initially with no sound speed gradient and gave erroneous
predictions within a few hundred metres at 50 Hz because of the large amount of upper
boundary reflection. Once these errors had grown, the PE could not maintain sufficient
stability to allow the range marching solution to proceed. The errors could only be
minimised by increasing the number of vertical mesh points which removed the speed
advantages of the LVS algorithm.

Subrange Configuration for Variable k;

In the case where ¥, = exp (i k, z) the choice of k, appears to be very important in terms
of PE stability. We set k; to match the vertical component of the wavenumber k(z,,)
taken at a "representative” height, z,. This height can be estimated on the basis of the
known still air solution. Ignoring ground reflection we guess a z,, value, find the
corresponding k, and E with the expression below. The required z., value is found by

iterating until E is a minimum

E = Z Ie”‘:‘. - e”‘.(z.)z.lz

The representative height, z., decreases with range. We therefore used a set of
subranges, typically 15, within each of which k, must be roughly constant. The
subranges increase in width typically approximately logarithmically starting at 250m.

At the interface of two subrange zones we must carry out an interpolation on the last set

of solutions in subzone N, @™, to generate the starting solutions in subzone N + 1, ™,

to allow for the change in ¥, from zone N to zone N+1



189

N)

2
o € ) = -\;(N—, " &) 7-1)

The subrange configuration produced a considerable improvement in prediction accuracy
for still air conditions. However when more realistic met profiles were used the

erroneous results and instabilities in section 7 recurred.

A Matched Vertical Wave Function Based on Ray Paths

The weakness of the LVS algorithm lies in the poor match achieved between
¥, = exp (i k, z) and the actual vertical field variation. If the large vertical steps are not
to introduce errors which accumulate as the solution proceeds it is vital that ‘¥, is
sufficiently close to the actual vertical component of the field that the residual ¢ only
changes very slowly with z. We introduce here a new matching function which is based

on the phase change produced along a ray path between the source and the chosen point
x, 2)
P, = el @8-1)

The function must be exclusively z dependent if we are to produce a soluble PE form.
We remove the x dependence by setting x at a representative value, & This type of
function clearly demands a subrange configuration so that ® can be reset for each
subrange (typically at the centre of the subrange). A ray may be traced from the source
through to a point, P, (%, z,) using the well known ray tracing equations (see reference
8) provided we know its launch angle, 6, and the sound speed profile, ¢(z). @ is found
by integrating along the ray path, £

P
o@z) =0 [ X 8-2)

Origin C(Z)

In the simple case of constant sound speed gradient the ray will be a circular arc, 6 is
known and the integral can be performed analytically. In the general case we will need
to launch rays which arrive close to (8, z,) from which we can deduce ® (%, z) using
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an interpolation method.

In our derivation of the MWE in equation (2 - 1) we were careful to use a general ¥,
so that all the equations in this paper will hold for either the exponential or ray based
matching functions. For the ray based function we can see from (2 - 3) that we will need

the first and second z derivatives of ¥,. We note that now

®z=ﬂ;¢=ﬂ+i¢: 8-3)

oz 2 8z?
The argument @ must be constant along any wavefront passing through (&, z) hence

@, = kz) sind (8-4)

where 0 is the ray direction at (%, z) which is known.

Tests for Constant Sound Speed Gradient Case

The predictions for still air and small gradient values (less than 0.05) were excellent
showing little upper boundary error. Predictions obtained with the new algorithm were
compared with those from our standard CN-PE using the same boundary conditions. The
new LVS algorithm did however generate a little more upper boundary error than the
CN-PE. The overall speed increase was not as large as we had hoped because the
minimum number of vertical points needed lay between V5 and % of the number required
in the CN-PE. In an attempt to improve run times we introduced logarithmically
increasing range, X, steps using the existing subrange configuration. This did give the
required increase in speed but at the expense of solution accuracy where the x step size

was large.
An Untransformed Version of the LVS-PE

The z transformation in section 3 could be dispensed with provided the discretisations
used in the z dependent operator can be set up for the unequal z steps. The existing

transformed version uses an 1 discretisation based on equal 7 steps. We use a parabolic
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fit to give an improved z discretisation

0

F(ZE = al (Pm-l + ﬁl (Pm * ?l (pmd

2 ®-1)
-a'zig' = az (pm-l + BZ e, * ?2 (pmol

The coefficients can easily be obtained as linear functions of d, =2z, - Z, and
d, =z, - z,,. In this case we must use the untransformed MWE in equation (2 - 2) to
give our PE algorithm. In principle the derivation given in section 4 for the transformed
case is applicable for the untransformed case with z now replacing 7 (and x replacing &).
The only change required will be the discretisations for the first and second 1 derivatives

of @, & and 8°, which are now z derivatives obtained from (9 - 1).

The untransformed LVS was tested as described above in section 8.1. There was a small
improvement in numerical accuracy and speed compared with the transformed version.
At 50 Hz for a 10 km range we have obtained a 5 times speed improvement over the
equivalent CN-PE performance.

Concluding Remarks/Future Developments

The LVS concept has been shown to be viable. We expect to improve run times to
around 10 - 50 times CN-PE values by improving the formulation of the upper boundary
condition, which will cut down upper boundary reflection even when we have large Az

values near the top of the atmosphere.

The algorithm tested in sections 8 and 9 was limited to the constant sound speed gradient
case. The algorithm for more general conditions is nearing completion and testing will

commence soon.

The formulation of the LVS-PE presented here has been carefully structured to permit
adaptation to the undulating terrain case. A new large step terrain algorithm is under

development, the formulation and testing will be presented at a later date.
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Abstract

This paper studies the sound propagation in a moving atmosphere using the
parabolic equation (PE) method. In the literature available PE models are usually
based on a narrow angle approximation. Furthermore, the moving medium is re-
placed by a motionless one with the effective sound speed which is a sum of the
sound speed and wind velocity component in the direction of sound propagation.
Here, to describe more accurately the effects of the mean wind velocity and its fluc-
tuations on sound propagation and scattering, a new wide-angle parabolic equation
and its Padé (1,1) approximation are derived. Numerical predictions of sound pres-
sure levels are presented in two situations; in the first one a mean wind profile is
considered, and, in the second one a turbulent velocity field is superimposed on a
mean sound speed profile. The influence of each terms occurring in the new PE
model are discussed.

Introduction

Parabolic equations have been used widely to predict sound fields in inhomogeneous me-
dia with variations in the sound speed ¢, density p and fluid velocity ¥. For numerical
simulations of outdoor sound propagation, parabolic equations have been derived using
the approximation of the effective sound speed. In this conventional approach the real
moving atmosphere is replaced by a hypothetical motionless medium with the effective
sound speed c.sf = ¢+ v;. Here v, is the wind velocity component along the direction of
propagation between source and receiver. When the source and receiver are close to the
ground, the preferred direction of sound propagation is nearly horizontal, and standard

1Y
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parabolic equations can be used to predict sound pressure levels. However, in many prob-
lems of atmospheric acoustics, refracted sound waves and those scattered by turbulence
propagate in directions which may significantly differ from the horizontal axis. A great
effort has been done to derive wide angle parabolic equations (see for example Lee et al.
(1], Gilbert et al. [2], Chevret et al.[3]). However, the equations derived do not take
into account accurately the effects of moving media. Using linearized equations of fluid-
dynamics, Ostashev et al. [4] recently derived a new wide-angle parabolic equation in
which the effects of the fluid motion are included correctly. Note that a similar approach
has been used by Godin [5].

In this paper we calculate the sound field due to a source located in a moving medium
above a rigid ground when both medium velocity and medium velocity gradients exist.
In a first section we describe the derivation of new wide-angle parabolic equations and
their Padé(1,1) approximations. The standard PE based on the approximation of the
effective sound speed c.ss will also be reminded. In second section, we present 2D nu-
merical simulations of propagation of sound waves in a stratified and turbulent moving
atmosphere. Two geometries are considered : (1) sound propagation in the presence of a
mean wind which is not necessarly colinear to the direction of propagation, and (2) sound
scattering into a shadow zone due to the random fluctuations of the wind velocity vector.
Furthermore, the predicted sound pressure levels based on the new wide-angle PE and
the standard PE are compared, and the influence of each terms in new PE are discussed.
And in conclusion we summarize the results obtained.

1 New wide angle parabolic equations

1.1 Starting equations

To derive a wide-angle parabolic equation for sound propagation in a moving medium,
the following heuristic equation based on the approximation of the effective sound speed
has often been used in the past:

[A + k(1 + €gy)] P(r) =0. (1)

where P(r) is the sound pressure field, A is the Laplacian operator, w is the angular
frequency of the sound field, k.= w/co is the wave number, €.s; = (co/cess)? — 1, and ¢
is the mean value of the sound speed. (Hereinafter, the subscript 0 denotes a mean value
of a variable). The Cartesian coordinates are denoted by (z,y,2) = (z1,%2,z3) where
z = x, is the direction of propagation and z = z3 is the vertical axis. It should be noted
that the heuristic Eq.(1) may lead to significant phase and amplitude errors when the
direction of sound propagation differs from the horizontal axis, or when there are regular
and random inhomogeneities in ¢, p and v (see [4] for a detailed analysis).

An exact equation for sound propagation in a homogeneous medium with a uniform
wind velocity is given by [6]:

2
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To evaluate the sound pressure field P(r,t) in an inhomogeneous medium, equation
(2) is still a reasonable approximation if the characteristic scale of wind velocity varia-
tions, L, is large in comparison with the acoustic wavelength, X. In this high-frequency
approximation, the operator (v - V)? can be represented as:

V)2 =42 (0.0 &
(v-V) —v,axi v,azj = V5o 9z; +O( )

Then, for a monochromatic sound field, Eq.(2) becomes:

2 : u 0 vy O _
[A+k (1+¢€) +2ikvV1+e 5z @ Bad; P(r)=0 (3)

By comparison with the Helmholtz equation (1), terms of second order in the Mach
number M = v/c are incorporated in equation (3), so better sound level amplitude pre-
dictions are expected especially in the case of strong wind velocity.

In inhomogeneous moving media, where both velocity and velocity gradients exist, the
sound pressure field is solution of the following equation ([6],[7]):

: A,
A+k2(1+e)—(Vln£)-V+%v- _%ou_0o
5 - Po Lo | w 0z;0z1;0z;

P(r)=0. (4)

) @) (4)

When comparing with the Helmholtz equation (1), the new terms represent the wave
scattering by dipoles through the wind terms (3) and by quadrupoles through the gradient
terms (4). Therefore, for sound propagation through turbulence, this equation will describe
more accurately scattering effects. The relative magnitude order of gradient terms (4) in
equation (4) with respect to the wind term (3) is A/L. In the following part of the paper
we assume that the density p is uniform, so the term (2) disappears in equation (4). Note
that equation (3) does not contain terms of the order M /L.

1.2 Derivation of wide angle parabolic equations

Parabolic equations derived from equations (1) and (4) have already been presented in [3]
and [4], respectively. Here, a wide-angle parabolic equation will be derived starting from
(8). On a first step, equation (3) is rewritten as :

52
(g + et} Pry =0, ©)
where : 5
o2 =1+F+ M, (6)
with : s 2 -
9 . Y1 VJ. 5!,_1 - vivj -1 7
Fi=7 p [co + 2=+ wz::z B On0m, ; (7)

€
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o2 (i P Vy
Ml—k(cz—v2)(w° : ) (8)

If the medium is slowly varying with the dlstance of propagation z, the commutator
{£, @1} can be neglected and the operator { 2+ K Q2f can be split into two indepen-
dent operators. Then for forward propagating waves, the equation to solve is :

J . :
(-(% - 1kQ1) P(r)=0
To approximate the square root of the operator Q2, we use a Padé (1,1) approximation.
After simple algebra we get the following equation :

[1+¢A P(r)-!-quﬂP(r ) =ik |1+ p7] P(r)+zklea—P('r) 9)

=
where p = 3 and ¢ = 1. Now according to equation (5), the operator qua s on the
left-hand Slte of Eq. (9) is replaced by —gk?M,Q;. Finally we introduce the complex
amplitude of the sound field #(r), so that P(r) = €'**y(r), and obtain a wide-angle
parabolic equation:

o
55 ") (10)

= ik [(p — q)F, +ik(p — Q)M — igkM F + qk*M%] ¥(r).

[1 + gy — ipkM, — qkw%]

1.3 2D wide-angle parabolic equations

The numerical simulations presented in this paper deal with two dimensional (2D) ge-
ometries. Here we summarize 2D wide-angle parabolic derived from equations (1), (3)
and (4):

e starting from equation (1) (see [4])

[1+qc ] % () = ik [(p - )£ wir), (1)

where: 1 8

Le=esit k2822

e starting from equation (3) (see Eqs.(7), (8) and (10) )
[1 + qF, — ipkM, — qksz] %%(r) (12)
= ik [(p — Q) F +ik(p — Q) My — igh My Fy + qkw%] ¥(r)
where: 5 s o a2
== [°°+2’°°ka +c;_2%:_22_]_1,
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2v, ) v, 0
= (o)
e starting from equation (4) (see [4))
oY . . o?
[1 +qF, — 'kaMz] 6_( r) =ik (p— q)F2 +ik(p — )M, — —Mg— (r),
(13)

where:

2i 1 (Ov, 0 1 21 (0v, Ov,\] 6%
fz—”—z(—z ”‘;)W[”fz(ax"az)]azw
2 v, 2z’ 1 (av,, av,) 8

0z + ozr ) 6z

Note that these three parabolic equations (11), (12) and (13) are reduced to the same
equation if v = 0. In the presence of a uniform wind velocity the differences between
equation (12) and equation (13) are due to second order terms in Mach number M.

2 Two-dimensional numerical simulations

In this section we present numerical simulations that validate the nunerical schemes of
solving new parabolic equations (Eq.(12) and Eq.(13)) We also compare differences in
predictions of sound transmission losses derived from the use of Eq.(11) based on the
approximation of the effective sound speed c,ss and correct wide-angle parabolic equations
(12) and (13). We consider the two-dimensional propagation of sound from a point source
located at £ = 0 and z = h, ( see figure 1). Numerically, each of previous parabolic
equations (Egs.(11), (12) and (13)) is discretized on a uniform mesh (i Az, j Az) using
a standard finite difference method. z-derivatives are evaluated with centered difference
approximations, and Crank-Nicholson scheme is implemented as a marching algorithm.
The horizontal step Az and the vertical step Az are equal to the smallest characteristic
scale of the problem divided by factor 5 and 10, respectively. The ground is modelled as
a perfectly reflecting plane by introducing a source at z = h; and its image at z = —h,.
The source is initialized by a Gaussian starter ([8]). A non reflecting boundary condition
is imposed at the top of the computational domain by adding an absorbing layer of several
wavelength thickness. In addition, to reduce the vertical size of the computational domain,
we choose to vary the altitude of the receiver and to keep the source close to the ground.
Note that the transmission loss T'L is defined below as 20 log(P/P,) where P, is the sound
pressure level in free space at a distance of 1 m from the source.

2.1 Validation and comparison with an analytical solution

In order to validate the sound pressure levels predicted by the use of new PEs (Egs.(12)
and (13)), we consider a simple model of a moving atmosphere in which the wind velocity

€y
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Figure 1: Geometry of the problem, which is numerically solved by using three PE.

level (dB)

Acoustic

(o] 5]0 160 1;0 260 250 300
Propagation Distance (mn)
Figure 2: Comparison between analytical solution [——] and the results obtained with

new parabolic equations : [a] Eq. (12), [0] Eq. (13). The horizontal velocity is constant
and equal to 5 ms™!. v =400 Hz, h; =5 m and h, =5 m.
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Acouslic pressure level (dB)

o SIO l(.)O Propagaﬁo:x;doistanee ) 2(.30 25.0 300
Figure 3: Comparison between the three PE : [—] the standard PE (11), [a] the PE

(13) and [o] the convective PE (12). The horizontal velocity is constant and equal to
v =10 ms™t. v =400 Hz, hy =5 m and h, = 10 m.

vector is constant and parallel to the horizontal axis (i.e. v, = v, v, = 0). In the presence
of a perfectly reflecting plane boundary, it is possible to evaluate the sound pressure field
using the method of image source. Using the analytical solution of Ostashev ([6]), we
obtained:

2 . Mcosaj—4/1 - M?sinq;
P(")=27r:_exp ikor; . M\é—l .

= 7

(14)

where j = 1 and j = 2 correspond to the source and its image, respectively, « is the
angle between the horizontal axis and the line-segment connecting source and receiver,
and r; is the distance between the receiver and the source or its image. Note that in this
solution, the phase is calculated to any order of the Mach number M to preserve possible
changes in the interference pattern due to the effects of the wind velocity. On Figure 2 we
compare the transmission loss evaluated with the PEs (12) and (13) to the transmission
loss given by the analytical solution (14). The horizontal velocity is constant and equal
to 5ms™!. v =400 Hz, h, =5 m and h, = 5 m. The agreement between the analytical
and new parabolic solutions is excellent.

2.2 Effects of a mean wind velocity

Figure 3 presents the results obtained with the new PE’s (12) and (13) and the standard
PE (11). The sound frequency v is still 400Hz, the wind velocity vector is parallel to
the z axis, v, = 10 ms~! and v, = 0 ms~!. The height of the source is 5 m and the
receiver is located at 10 m from the ground. As expected, the prediction obtained with
the standard parabolic equation (11) is different from two other predictions based on new
parabolic equations. This difference increases with the distance of propagation. In terms

(20

£



201

of geometric acoustics, the receiver is reached by two different paths: a direct ray and a
reflected ray. The sound speed, ¢ + v cos 8, varies on each ray with 6 and the use of the
effective sound speed, c + vz, introduces a cumulative phase error in standard parabolic
equation. This error increases with the receiver height, the distance of propagation and
the wind velocity.

Now we consider the sound propagation in an inhomogeneous medium with a con-
stant vertical wind gradient dv,/d z. The wind profile is the linear wind profile used in
[9]: vz = 0.1 - 2 for z < 200 m, vz = 20m.s~" for z > 200 m, and v; = 0. This downward
propagation geometry is very sensitive to the wind velocity. First, for long distances,
because of the occurrence of caustics, more than two rays reach the receiver. Secondly,
the paths are curved downward so directions of sound propagation differ from the hor-
izontal axis. On Figure 4 we compare the transmission losses obtained with standard
PE (Eq.(11)) and new wide-angle PE (Eq.(13)) for three different heights of the receiver
(h, = 1 m, 10 m, 50 m). We notice significant differences between two predictions. Again,
as expected the difference depends on the receiver height and the distance of propaga-
tion. For example with a receiver located at the altitude of 50 m when the distance of
propagation is greater than 1000 m, the positions of interference maxima and minima are
totally shifted and the difference in the transmission loss level is of the order of 5 dB.

For the next geometry, the direction of wind velocity is perpendicular to the direction
of sound propagation from source to receiver. In a 2D medium we will have: v; = 0
and v, = v. On Figure 5 we compare predictions of the transmission losses using three
PEs. The frequency of the source is v = 400 Hz. The heights of the source and receiver
are h, = 5 m and h, = 10 m, respectively. As expected, standard PE (Eq.(11)) does
not take into account the vertical wind velocity and the phase errors in the sound field
dramatically increase with range. For example at a distance of 240 m the use of standard
PE (11) results in destructive interference while new PEs (12) and (13) do not reveal
it. We also plotted on Figure 5 the transmission losses calculated using a ray tracing
algorithm. There is a concern whether the geometric acoustics method is able to include
the velocity vector in exact way ([10]). One of the difficulties of this method is related to
the finding out of all eigenrays, which are necessary for computation of the transmission
losses. Of course, this approach will fail in a shadow zone. Nevertheless up to a distance of
propagation of 200 m, the comparison is in favor of new PEs which incorparate rigorously
the wind velocity.

Finally, for all geometries considered so far in this section, two new PEs (Eq.(12) and
Eq.(13)) give the same numerical predictions.

2.3 Sound scattering into a shadow zone

We now consider sound scattering into a shadow zone due to random fluctuations of the
wind velocity vector. The vertical profile of the sound speed is given by:

o(z) = co+ A log (Z ; d) (15)

where A = 2 ms~! and d = 6.107% m as in [11]. Then, a homogeneous and isotropic
turbulent wind velocity is superimposed on the mean sound profile. This random vectorial
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Figure 4: Comparison between two PE : [---- ] standard PE (11) and [—] new PE (13).
dv./d z is constant and equal t0 0.1 s™}. v = 400 Hz and h, = 5 m. From the top to the
bottom h, is equal to 1 m , to 10 m and to 50 m, respectively.
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Figure 5: Comparison between results obtained by the ray tracing program [—], the
PE (13) (4] and PE (12) [g]. Standard PE (11) solution is plotted with [0]. The vertical
velocity is constant and equal to v; =5 ms~!. v=400 Hz, hy =5 m and h, =10 m.

field is generated using a Random Fourier Modes (R.F.M.) method with a von Karman
spectrum model for the turbulent kinetic energy repartition [10] and [12]:

802 (k/k.)’ [ k 2]
E(k) =z -2{+ 16

Here k, = 0.586/L , k, is the Kolmogorov wavenumber, o2 is the velocity variance and L
is the outer scale of turbulence. In our numerical simulations, L = 2 m and o, = 1 m.s™".

On two Figures 6 and 7 we compare the results obtained with standard PE (11)
and new PE (13) which includes velocity and its gradient. Each curve corresponds to a
single realization, and the same realization of the turbulent medium is used for both PEs.
Figure 6, corresponding to the sound frequency 400 Hz, shows some important differences
between two PE. At large distances of propagation this difference increases up to 10 dB.
However, for a higher frequency of the source, 1000 Hz (see Fig.7), the difference is less.
In fact, the order of magnitude of the additional gradient terms in equation (13) is MA/L
(1/A? is taken as reference value). Therefore, for heigher frequencies, a contribution from
these terms is smaller. Nevertheless, after averaging over 30 realizations a difference
between two numerical predictions is less than 3 dB (see Figures 8 and 9). On Figure
10 we detail the difference between these two solutions for each frequency of the source
v = 400 Hz (top graph) and v = 1000 Hz (bottom graph). We notice that the variation
in the mean sound level is greater for smaller acoustic frequencies. Thus, we can assume
that the effects of large structures of the turbulence are well describe with the use of
standard parabolic equation. Note that the use of a PE with accurate description of the
wind velocity does not influence the average sound scattered level even if the instantaneous
behaviour of the sound propagation is strongly affected.
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Figure 8: Comparison between the results of standard PE (11) (4] and new PE (13) [o].
The plain curve [—] is the solution without turbulent wind field. The wind turbulence

is generated by a RFM method using a von Karman spectrum with o, = 1 ms™! and
L=2m. v=400 Hz, hg =5 m and h, = 10 m.

However at this point it is important to note that a real turbulent atmosphere is
not isotropic and homogeneous and the recent work of Wert et al. ([12]) demonstrate
the importance of the variation of the outer scale of turbulence with altitude. Another
important parameter is the time evolution of the turbulent atmospheric boundary layer
and the effect of intermittency of the ABL on the scattered sound ([13],[14},[15]). In this
case, the use of accurate PEs which incorporate the wind and gradient terms are of great
interest for a rigorous modelisation of sound propagation (as an example note on FIG. 6
and FIG. 7 the transmission loss variations from one realization to another).

The results obtained here are in a qualitative agreement with the ratio o(8)/oeg(0) =
cos? @, obtained in Reference [4]. Here, @ is the scattering angle, and o and geg are
the sound scattering cross-sections derived from Egs.(4) and (1), respectively. The sound
pressure in a shadow zone is believed to be depended on ¢. For small @, which are probably
delt with in sound scattering into a refractive shadow zone, the difference between o and
oe is small. For large 8, which might be a case of sound scattering into a shadow zone
in a presence of a barrier, the difference between o and oeg is large.

Conclusions

In this paper we have presented 2D numerical simulations of sound propagation and
scattering in random moving media. We derived a new wide-angle parabolic equation
and its Padé(1,1) approximation. We have shown that the use of the effective sound
speed assumption is not sufficient to describe accurately the effects of mean and random
wind velocity on sound propagation through moving media. In particular our numerical
simulations reveal that all the components of the wind velocity vector and the associated
gradient terms have to be considered in order to obtain an accurate modeling of sound
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Figure 9: Comparison between the results of the standard PE (11) [4] and new PE (13) [o].
The plain curve [—] is the solution without turbulent wind field. The wind turbulence
is generated by a RFM method using a von Karman spectrum with o, = 1 ms™! and
L=2m. v=1000 Hz, hs =5m and h, =10 m.
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propagation in the turbulent atmosphere.
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Numerical Modeling of Long Range Propagation from Explosion Sources
Rod Whitaker, James H. Hunter, and Kalpak Dighe

Earth and Environmental Sciences Division
Los Alamos National Laboratory

Using a modified version of the Pierce-Posey-Kinney normal mode code, we
present results of long range propagation calculations for explosions sources. Our
modifications include a WKB approximation for mode location and porting the code to
Fortran 90 on a Unix workstation. We will summarize results for ideal ducts, with and
without winds, which serve as excellent test cases. Then results for surface bursts will be
given for realistic atmospheres with and without winds at long range, several hundred to
a thousand kilometers. Finally, numerical results and observations will be compared for
a large surface explosion. The observations were made with infrasound arrays operated
by Los Alamos National Laboratory.
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ABSTRACT:

Modifications have been made to the standard ray-mode theory of Tindle and
Guthrie (1974) to incorporate steady state horizontal winds in the inviscid,
linearized flow approximation for a range-independent environment. It has been
found that the formal inclusion of winds is limited to a certain range of launch
angles and a specific criterion has been developed to evaluate this fundamental
limitation of the method. This method does not predict the wave amplitude, but
only the relative distance, i.e., the ray-mode skip distance,
will be present at any direction surrounding a sound source.
work has been to be able to develop a tool to understand the
counter-wind return from explosions compared to its down-win
we have applied this new method to seasonal model atmosphere
simultaneously satisfy the combined constraints of a geostro
wind balance for a hydrostatic atmosphere.
distances increase for the counter-wind flow case and decrease for the down-wing
case in comparison to the cross-wind (or no wind case). (This is exactly the
opposite of what is predicted for an ideal iso-velocity duct.) Also, the
frequency of the counter-wind flow is lower than that corresponding to the down-
wind situation. This result means that diffraction effects are more likely to
contribute to the nature of the counter-wind signal from near-surface
explosions. The height regime of the free wave modal zeros is very different for
the two extreme wind cases and gives rise to two ducts in the down-wind
direction, i.e., the Stratospheric and Thermospheric ducts and to a single duct
in the up-wind direction, i.e., the Thermospheric duct. This approach allows us
to evaluate the propagation differences for monochromatic inviscid propagation
through realistic model atmospheres. In addition to the deterministic sound and
wind speed profiles, we have also added a chaotic perturbation function to the
sound speed profiles to illustrate the effects of waves and turbulence on
acoustic wave propagation. Significant propagation changes are predicted to
occur for the up-wind pPropagation case at the lowest free wave mode numbers
where the horizontal wave number is largest. From the results of this model
these latter effects seem to be the only way to allow acoustic energy to reach
up-wind locations at a similar delay time to the downwind returns.
was undertaken because of the current CTBT IMS (Comprehensive Test
International Monitoring System) monitoring needs for a better unde
long range propagation of sound waves in the atmosphere.

where wave energy
The goal of this
nature of the

d counterpart. Thus,
s with winds that

phic and thermal
It was found that ray-mode skip

This study
Ban Treaty,
rstanding of
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I. Introduction and Overview
A. Mode-ray theory

Systematic studies of the combin
led to a deeper understanding of bo
computing acoustical propagation ef
limit. The ray-mode theory is based

between two adjacent modes of unequal amplitude and the production of an
associated ray-mode skip distance fo

r each mode at each frequency as a function
of the thermodynamic structure of the environment in which the acocustic wave is
propagating.

Some of the earliest attempts to connect
approaches were made by Tolsto
by Weston and Rowlands (1979).
a culmination for the case of p

ed predictions of ray and mode theory have
th mathematical types of analyses for

fects in stratified media in the linear, WKB
on the concept of a interference length

these two fundamental alternative
Yy and Clay (1966) and by Weston (1968) and later
Tindle and Guthrie (1974) brought the subject to
erfectly stratified media, whereas similar work
by Rutherford (1979) accomplished the same level of understanding for simple
range-dependent environments. The basic result is that the constructive
interference effects for a certain group of modes is physically linked to an
equivalent ray angle obeying Snell’s law. Similar work has apparently not
proceeded for understanding propagation effects in the atmosphere.

B. Snell's Law Propagation Predictions

The geometrical optics version of Snell's law of wave refraction dates back
to at least 1621 (Pierce, 1989). Its acoustic counterpart seems to have been
recognized much more recently however, for example as presented in Milne (1921).

This subject is also discussed in the geometrical acoustics kinematic approaches
of Groves (1955). Other references to the history of this subject include the
work of Thompson (1972).

It has long been recognized that for atm
summertime when the prevailing Stratospheric winds reverse from their middle
latitude westerly origins to easterly, that an asymmetry in wave normal
propagation existed for the upwind and downwind directions. Specifically for
wave normals emanating in the downwind direction (with the wind), returns from
about 50 km are readily predicted using Snell's law due to the combined presence
of warm temperatures and strong winds in the middle of the Stratosphere. For
propagation against the prevailing Stratospheric wind in summer however, no
returns are predicted from the 50 km region, but instead only from the lower
thermosphere region near 100-110 km (Donn and Rind, 1972). Despite this
prediction of no arrivals from the lower sound channel, full wave propagation
codes, such as those developed by Pierce and co-workers {1976) and many earlier
researchers have consistently predicted the presence of signals at the
appropriate range against the wind in summer, albeit much weaker in amplitude
than for the corresponding downwind summertime case. The corresponding problem
has not been addressed in the case of underwater sound propagation simply
because the prevailing currents such as the Gulf Stream are sufficiently slow
compared to the phase speed of acoustic waves in the ocean (about 1.5 km/sec)
that the corresponding effects do not materialize to any substantial degree.
This is also true because the corresponding maximum oceanic sound channel depth
is much shallower (Jensen et. al., 1994) than for the dominant sound channels
considered for long distance atmospheric sound propagation.

The key unanswered question has been by what mechanism(s) does the sound
reach ground level for such cases when Snell's law does not predict possible
refractive returns on the basis of the observed atmospheric temperature and wind

ospheric propagation in the
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Structure. For example, diffraction effects not explicitly accounted for in the
ray theory could be responsible as could wave scattering effects. Using our
current approach we will show that the combined-ray mode theory predicts
arrivals for the counterwind summertime returns from both the 50 km and the 100
km regions under appropriate conditions. Based on results discussed in section
III. it seems likely that these differences are due to diffraction effects.

II. Mathematical Development

A. Standard Ray-Mode Theory: No inclusion of winds/currents

Traditional ray-mode theory,

as applied to the underwater acoustics
environment, does not include mass

average motions of the ambient medium, i.e.,
winds or currents since they are so slow in comparison to the thermodynamic

sound speed. Thus the maximum oceanic Mach number is about arcsin (2/1500)=.001,
whereas in the atmosphere it can be as much as 1/3 or even higher on occasion.
Thus, for the oceanic case,

the neglect of winds is not even a second order
effect except at very close range unless travel times between source and
receiver are extremely short

Thus, starting from the sim
(1974), we have the following
for a static

plest ray-mode equations of Tindle and Guthrie

perfectly stratified atmosphere relations, derived
medium with no mass average motions, i.e., winds:

a) Perfectly Reflecting,
Homogeneous Sound Channel (Iso-velocity):

D=2*H*Kx/Kz (1)
where
n = Free wave mode number (0,1,2,3, ...... ) -
Kx = horizontal wavenumber of the nth mode
Kz = vertical wave number of the nth mode
D = Mode cycle skip-distance
H:

vertical sound channel thickness

b) WJKB Approximation: For normal modes with 2 turning points at zl1l, z2:

D = 2*Kx*|{dz/Kz} (2)

More generally (Jenkins, et. al., 1995), we can write an expression for D as:

D=|2#r/3Rx/8n | (3)

Also, following Weston and Rowlands (1979),
the effective number of modes that need to be c
in the limit where Kx approaches zero.

we can also set an upper limit on
onsidered in an ideal waveguide

Nmax = 2*H/Ax (4)

where
Ax= Wavelength of the acouscic wave

In this analysis we have maintained the full acoustic
definitions of Kz, as given in Beer (1974).
isothermal and the non-isothermal definition

-gravity wave regime
We have also utilized both the local
s of the Brunt-vaisalla and the
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acoustic waveguide cut-off fr
The Piere-Posey-Kinney normal mode code utiliz

B. Propagation effects from near-surface explosions

It is also well known that there is a strong asymmetry in the propagation of
acoustic waves from near-surface explosions. Downwind the waves travel in two
ducts, one between the ground and the top of the Stratosphere and the other
between the ground and the base of the Thermosphere. In the up- or counter-wind
direction, high frequency ray theory (using Snell’s law including both
temperature and winds) predicts that propagation should occur solely in a
Thermospheric waveguide between the ground and about 110 km. Observations
indicate that both directions receive sound at the canonical 200 km range, but
that downwind maximum amplitudes exceed those up-wind by 20-30 times. Full wave
theory modal analyses using the Pierce-Posey-Kinney (1976) normal mode code also

completely realistic sound and
wind speed profiles (personal communication with R.W. Whitaker, 1997). Bush et.

al. (1997) and Kulichkov (1998) has also analyzed this situation and found that
scattering from quasi-permanent turbulence in

can produce the observed up-wind signal.

It is also very clear that the sole mechanism in the full wave theory that
is not accounted for in ray theory is diffraction and not scattering, but the
precise way in which the sound arrives at 200 km up-wind with an associated
timing for Stratospheric waveguide propagation is not clear. Because of these
apparent conflicts we undertook an analysis of the ray-mode theory while

incorporating steady state horizontal winds in a range independent environment
for the first time as will be discussed below.

C. Scattering and Diffraction Processes and Associated Scales

We can identify numerous vertical length scales in the atmosphere that have
direct relevance to the propagation of acoustic waves. These include the
pressure and density scale heights (Hp, Hr) the vertical depths of the main
upper and lower acoustic sound channels in the atmosphere (Hu, Hl), scales of
characteristic eddies in the planetary boundary layer and within the surface
layer where the waves are observed (Hpbl, Hs), etc.. We must also compare these
scales considered as acoustic frequencies to the relevant resonant frequencies
of the atmosphere and of the acoustic waveguide in the frequency band of
interest. Here we use the conventional isothermal, windless atmosphere
definitions for simplicity of the relevant angular oscillation frequencies
associated with atmospheric propagation processes and associated dynamics, etc.,
namely (Beer, 1974):

Following Draganov and Spiesberger (1995), and letting Cs
standard isothermal acoustic resonant fregquen

Qa= acoustic cut-off frequency= 2.08-10(-2) /s
Fa = 1linear cut-off frequency= 3.31.10(-3) Hz
Qbv= Brunt frequency= 1.88-10(-2) /s

Fbv= 1linear Brunt frequency= 2.99-10(-3) Hz

= 331 m/s and using
cy definitions (Beer, 1974):

Assigning the numerical values:

Hp= 8 km, Hr= 10 km
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Hu= 100 km, H1 = 50 km
Hpbl= 1 km, Hs = 10 m

we can calculate the following linear fr

equencies in association with these
vertical scale sizes:

Fp = 4.1-10(-2) Hz, Pr = 3.3-10(-2) Hz
Fu = 3.3-10(-3) Hz, F1 = 6.6-10(-3) Hz
Fpbl = 3.3-10(-1) Hz, Fs = 3.3:10(+1) H=z

By associating these frequencies with the Brunt and acoustic waveguide cut-
off frequencies as in Dragan

ov and Spiesberger, 1995), we can infer the
associated vertical length scales for which diffraction effects are important

compared to scattering effects during acoustic wave propagation through the
atmosphere. To do this we make use of the size parameter:

L = 2n*a/Ax (5)
where a is the radius of the "scatterer®
the wave. For L. >> 1, the geometrical aco

evident, whereas for L << scattering is evident. For L = 0(1), diffraction is
important. Thus, scattering is important when the size of the eddies in the
fluid are small compared to an acoustic wavelength, whereas diffraction effects
are important if the eddy size is comparable to the acoustic wavelengths of

interest. In the geometric acoustics limit the radius of the features that are

redirecting the sound waves are very large compared to the acoustic wavelengths
(Thompson, 1972). :

and Ax is the acoustic wavelength of
ustics regime, i.e. ray theory is

Thus, we can see that vertical scales associated with e-folding of pressure
and density are about 1 order of magnitude higher in frequency than the
atmospheric resonant frequencies. In contrast, the scales associated with the
acoustic ducted propagation are of the same order of magnitude as the resonant
frequencies, whereas the boundary layer frequency scales are two to four orders
of magnitude greater than the atmospheric resonant frequencies. As discussed in
Draganov and Spiesburger (1995), for the higher frequencies, the scales
controlling the diffraction process are the dimensions of the wave focussing
regions. When the effects of wave scattering are negligible, the focussing
regions are comparable to the acoustic wavelength and diffraction effects are
important. Conversely if the scattering processes act to diffuse the spatial
scales of the wave focussing regions, diffraction effects are negligible on the
associated ray travel times. In addition, the scale of the source of the waves
itself can produce associated focussing regions which can effect the
propagation.

On the basis of the numerical values presented above,
diffraction effects are negligible for wave frequencies s
the duct height associated frequencies (which are aiso comparable to the
resonant frequencies). Thus, we expect for atmospheric acoustic waves, that
diffraction should be of importance at all frequencies below the geometrical

acoustics limit, Az << gHp or << ~11.2 km (Thompson, 1972b), until L ~ 1. Using
L = 0.1 for example, this condition occurs for Az = 1 km for a= 0.1-(1/(2mr)) =
1.59-10(-2) km = 15.9 m. Using Az = 1 km, we have an effective lower frequency
limit of about 0.33 Hz for the utility of the geometrir-1 acoustics ray
concepts.

we can conclude that
ignificantly less than

Since we are only concerned in this analysis with distance and time scales
and not amplitude (except in a qualitative sense), we can adopt these
operational definitions for our current purposes.

¢,
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III. Fundamentals of Ray-Mode Modeling Ray-Mode Theory with Winds (in the
linearized, inviscid, WKB Limit)

A. Mode Theory

If winds are added to the problem at hand, they must be added in a self-
consistent way to both the ray and to the modal theories. Thus,
theory, we have the kinematic Doppler-shift relationship,
wavelength of the sound source is a conserved quantity:

for the mode
which assumes that the

Q(z) = Qo + K(z)ev(z)= Qo* (1+{V(z) /Cs(2) )} *cosd) (6)

where
Q = angular wave frequency in the non-moving Barth frame
Qo = intrinsic angular frequency in the moving medium (= constant)
K(z)

= Total wavenumber vector in two dimensions
(With Ky assumed to be =0).
V(z) = Vector wind speed

8 = Angle between the wave heading and the wind vector
B. Ray Theory
In the ray theory we must add the zonal,

as indicated in Jones (1969) and in Thompso
for a perfectly stratified atmosphere and p

meridional and vertical winds (u,v,w)
n (1872) to the ray equations which
lane waves (B = 0), reduce to:

dx/dt = a-Cs(z) + ul(z); o= cosd

(7a)
dy/dt = v(z) {(7b)
dz/dt = %y-Cs(z) + w(z); Y= sin@ (7¢)

Briefly, we proceed exactly as with standard ray-mode theory, but now
explicitly include the effects of the wind terms in the expression for the total
ray path travel distance and in the angular wave frequency in (6). After this
process is repeated as outlined in Tindle and Guthrie (1974), we find that the
identical expression for the ray-mode skip distance is predicted if the launch
angles are sufficiently shallow combined with other limits on Cs(z) as well.

1iv. Representation of Atmospheric Acoustical Structural Parameters

Subsequently, we consider applications of the above,
equations to the Stratospheric and Thermospheric atmos
the mean summer and winter propagation conditions resp
the onset that the effects of a finite ground impedanc
the low-frequency sound propagation being considered,
frequencies << 10 Hz (see for example the recent work of Robertson et. al.,
1995). Thus, we will not explicitly consider the effects of the surface and of
the boundary layer on the surrace reflection effects, etc..

We have used the combined geostrophic and thermal win
scale horizontal atmospheric motions,
a function of altitude.

simple cases of ray-mode
pheric sound channels for
ectively. We assume from
e are not significant for
with associated

d balance for the large
in order to predict the wind structure as
Here we have made use of Egnell’s law (Humphreys, 1964)
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which connects the density scale hei

ght and the air density of the atmosphere to
the 2onally averaged horizontal win

ds using the relationships:

(1/u(z))*dau(z) /dz=1/Hr (8a)

(1/p(z)) dp(z) /dz=- (1/Hr) (8b)

Briefly, using (8a) and (8b) in combination with the zon
south temperature gradient at 1 km (above the boundary layer since this is an
inviscid relationship) and the altitudes where the temperature gradient switches
sign, we can fully predict the horizontal, steady state winds as a function of
height. This process also conserves the horizontal momentum £flux as well,

The mean winter temperature and sound speed profile that has been determined
using this approach and which has subsequently been fitted smoothly using a high
order polynomial function is plotted in Figure 1. The mean isothermal and non-
isothermal acoustic waveguide cut-off and Brunt-Vaisalla resonant frequencies
have been computed from these basic curve data and are plotted in Figure 2.
Similarly the mean winter horizontal zonal wind as a function of height are
indicated in Figure 3 (assuming a N-S temperature gradient of 40 deg X/10,00 km)

We have also introduced a special chaotic function from Lorentz (1976) to
calculate chaotic deviations of atmospheric structural parameters. Here we have
used a=0.9, which corresponds to a chaotic perturbation which can change its
sign with respect with height. This is a very convenient way to add chaotic
perturbations to the propagation problem since the function can be

completely
controlled by appropriately modifying the initial value and/or the

nonlinear
control parameter, a. The effects of the inclusion of this nondeterministic

propagation term will also be discussed again briefly in Section V.cC.

ally averaged North-

V. Predictions of Modified Ray-Mode Theory:Interference Length Variations

A. 1Ideal versus seasonal atmospheric model solutions

An analytic solution is readily available for the case of a homogeneous iso-
velocity duct for propagation in a windless environment as indicated earlier. We
have used this ideal standard to compare all of our numerical calculations
against, i.e., to act as a calibration check of all of our results.

B. General Cases:

1) Cross-wind case:

As should be expected this is full
have found by direct numerical inte
the lower Thermosphere is the only

Y equivalent to the case of no winds. We

gration that ducting between the ground and
possibility for this case.

2) Down-wind case:

We have determined that ducting can occur either between the ground and the
Stratopause or between the ground and the base of the Thermosphere. Also, the

higher order free wave mode numbers correspond to steeper angle propagation
paths.

¢

€
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3) Counter-wind case: In this case,
only occur in a duct between the gro
quite high free wave mode numbers.

we have determined that pPropagation can
und and the base of the Thermosphere at

In Figure 4. We have plotted the predicted skip distance as a function of the
free wave mode number for the mean winter profile indicated earlier. Notice
that the down-wind solutions are all quite small compared to the up-wind case.
This is also the case for the mean summer profiles considered as well. Thus
weaker winds do not change the conclusions that have been reached. The
largest counter-wind skip-distance values correspond to propagatio
~and 120 km and are not relevant to ground based observations.

All of the above results are fully consistent with the predictions of Snell’s
law and of ray theory in the high frequency limit (Donn and Rind, 1972).

very
n between ~60

C. Inclusion of a chaotic propagation term into the thermodynamic sound .speed:

In order to examine non-deterministic effects, we have also
presence of a chaotic perturbation propagation term in the the
speed profile. We have found that the inclusion of this term i
relationship is very significant for the counter-wind case. It
acoustic energy to reach the ground which otherw
deterministic sound and wind speed values. In Figure 5. we have plotted the
sound speed, wind speed and effective sound speed as a function of the
geopotential height for the case of counter-wind propagation in the winter,
including these perturbation values. In Figure 6., we have also plotted the
corresponding counter-wind propagation skip-distance with and without the
inclusion of any chaotic terms in the sound “speed profiles.
see that the presence of small amounts of variations in the sound speed as a
function of height can make a dramatic difference in the presence of sound at
the corresponding first bounce range from the Stratosphere (~200 km).

included the
rmodynamic sound
n the sound speed
can allow
ise would not occur using solely

Here we can clearly

VI. Summary and Conclusions

A. Mode-ray theory

We have successfully incorporated winds into the standard ray-mode theory of
Tindle and Guthrie (1974). We have found that the exact inclusion is limited to
a range of shallow launch angles and other variations of the slowly varyving,
thermodynamic sound speed profile. We have successfully applied this new theory

to a specific propagation problem in the atmosphere that has long defied a
solution, namely the case of up-wind propagation.

B. Atmospheric Propagation Effects

An analysis has been made of the anomalous, propagation of sound wave energy
against the prevailing winds in the Stratosphere. Even though Snell's law
predicts no arrivals from the lower sound channel in this direction, waveguide
mode theory predicts an arriving signal and such signals are also observed,
These observed signals are far weaker however than the corresponding downwind
case at a range of about 200 km. Since the waveguide theory contains diffraction
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effects and since we predict that lower frequencies enter this anomalous zone
upwind of the source, we can conclude that the wave energy enters the region
through diffractive effects which are implicit in the full wave modal waveguide

theory. The full details of this work will be submitted to J.A.S.A. for
publication.
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Figure 1. Mean winter curve fit of the temperature and computed thermodynamic

sound speed as function of geopotential height



Mean, middle latitude profile in Winter:
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Winter: Zonal wind profile: N-S surface temperature gradient= 40 K
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Figure 3. Mean winter zonal wind speed as a function of geopotential height:
km. Directly calculated Geostrophic-Thermal winds and high order polynomial
curve-fitted v~sul*. (N-S. temperature gradient= 40 K/10,000 km).
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Winter: Ray-mode skip distance versus free wave mode number:
=0.1 Hz, Vertical step =0.25 km, Curve-fit winds for all heights
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Winter: Propagation against the wind
f= 0.1 Hz, Chaotic perturbations included with a= 0.9 and 1X nominal functional value
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Winter propagation against the wind: Including perturbation propagation terms
£=0.1 Hz, a=0.9, 1X the nominal chaotic functional value
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Figure 6. Skip-distance versus the free wave mode number for counter-wind
Propagation in Winter with and without the inclusion of chaotic perturbations
in the vertica. sound speed profile.
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The split-step Padé method for the resolution of the 2D parabolic equation (PE) is
used to study traffic noise propagation in a stratified atmosphere.

Our study focuses on the propagation of mechanical noise from a highway,
typically represented by a very low monopole source height and by the presence of
an impedance discontinuity (infinite/finite representative of asphalt/grass) and of an
acoustic barrier (screen, berm, ...) along the sound wave path.

Thus, after the validation of the code for simple cases, an impedance jump is firstly
introduced. The split-step Padé results are presented for an atmosphere either
homogeneous or stratified, qualitatively in one hand by maps showing diffraction
by the discontinuity, and quantitatively in the other hand by comparison with other
numerical, analytical or experimental data.

Finally, a range dependent gradient of celerity is introduced to model the air flow
perturbation induced by a noise barrier for instance. Several gradient profiles are
presented, for different geometrical configurations.

INTRODUCTION

During this last decade, the propagation of sound above a plane and heterogeneous ground
(with an impedance discontinuity) with or without refraction phenomena has been extensively
studied 2, analitically, numerically and/or experimentally. When a noise barrier (or berm,
slope, etc) is located between the source and the receiver, a perturbation due to wind
conditions occurs. This perturbation has an important effect on the refraction and modifies the
celerity profile in the screen proximity 13 Moreover, a change in the impedance value can
appreciably alters the vertical temperature gradient, and thus the celerity gradient.

The traffic noise is a practical application of such a situation. Beyond 60 km/h, the tire-road
noise predominates over the mechanical noise. Recent experimental works carried out in the
Laboratoire Central des Ponts et Chaussées (LCPC) showed that the sound source equivalent
height is very low (of the order of a few centimetres, typically 3 cm) and that this source can
be correctly modelled by a monopole sound source 1 Moreover, traffic sound is most
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commonly generated above an acoustically hard surface (asphalt or concrete), and crosses an
impedance discontinuity along its propagation from the source to the receiver above a softer
surface such as grass or snow.

The purpose of this study is to quantify the influence of a modification of the refraction profile
on the acoustic field due to the presence of a virtual obstacle on the sound path. The frequency
range is [100 Hz ; 5 kHz] and the distances involved are of the order of hundreds metres, in
order to take into account the celerity gradient effects.

Numerical results are obtained using the parabolic equation and the split-step Padé method for
its resolution **. Even if the acoustic scattering by the turbulent flow is not (yet) beyond the
scope of our study, it must be noticed that this marching algorithm has been recently improved
by the acoustic group of the Ecole Centrale de Lyon (ECL), particularly in the way of
generating and introducing turbulence in the code '®"". In the present work, we introduce an
impedance discontinuity in the marching algorithm, and we set the celerity gradient to be
range-dependent with a linear evolution between two profiles.

The results are firstly compared to numerical and experimental data existing in the litterature,
in order to validate the code for gradually more realistic cases.The split-step Padé method still
shows its accuracy and its efficiency in terms of CPU time. Finally, we study several cases for
which there is no experimental data available.

. THEORY
l. A. The Parabolic Equation

In the linear acoustic approximation, the acoustic pressure p is solution of the elliptic (two-

way) Helmholtz equation Ap + k2?p = 0, where k = = k,n(r,z) is the wave number, k,

c(r, 2)
is a reference wave number, f'is the frequency, ¢ is the vertical sound celerity gradient and n is
the refraction index (c and n both depend on the range and height coordinates, respectively r
and z). If the azymuthal symmetry is assumed for the acoustic field, this equation is then
written in the 2D cylindrical coordinates system :

& 18 &
(e mne)o=o ®

The sound pressure is next split up into two components: an outgoing cylindrical wave
represented by the Hankel function and its far field approximation (k,r >> 1), and an envelope

function u(r,z) which is assumed to vary slowly with range :

p(r,z)=u(r,z)Hf,"(k.,r)z%u(r,z)exp(ikor) @

where the carrier wave number k, is now chosen close to the dominant horizontal wave
number in the spectral decomposition of u(r,z). An approximate value for the carrier wave

. @ - .
number is k, =, where T is the average sound speed ¥
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* Assuming that n(r,z) is weakly range dependent and that the back propagated acoustic energy
is negligible, the evolution of u(r,z) is governed by the one-way parabolic equation :

28D - i(e- o) ®
2
where the pseudo-differential operator Q is defined as Q = -667+ k2n?.

According to the series expansion order of the square root of the pseudo-differential operator
Q, the different approximations lead to different angle limitations for the acoustic propagation
and to different numerical (finite-difference) schemes.

l. B. The split-step Padé method
Y]

Defining a new pseudo-differential operator Q' as Q*=1+&+n where &= -kl—:-aa? and
n= n? -1, the parabolic equation (3) is rewritten :
Ou

= =iky(Q-Du @

Like the split-step Fourier method **, the first idea is to solve the Eq. (4) before applying a
Padé approximation **.Given the field at an arbitrary range r,, and assuming that Q* varies

very slowly on the interval [r,,r, +Ar], the solution of Eq. (4) at the range 1, + Ar is:
u(r, +Ar,z) = exp[iko(Q"l)Ar ]u("o, zZ)= exp[c(Q'—l)]u(ro,z) )

Defining 3= Q'?>-1, the next and major idea of the method is to approximate the whole

operator exp[c(Q'-1)], where ¢ = ik,Ar. This is realized by a second order Padé
expansion of Q'= 1+ 3 which yields '*!":
1+p,3+p,3*
explo(Q-1)] = explo(T+ 3 - )] w L2

1+q,3+q,3°

()

The coefficients p,, p,, q, and q, are easily deduced from a fourth order Taylor development
of the exponential operator exp[c(Q'-1)] :

3+, _c'+60+3 _3-0 _o’-60+3

= = 7
4 ’ pz 48 ? ql 4 ’ q2 48 ( )

Finally, the marching algorithm is expressed in terms of the coefficients p,, P,, Q1> 92>

= n? -1 and of the operator §.= —— as:
n P K o7

[0+ a0 Jut +4r,2) =[Lep (D + R (8 uwz)  ®
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The numerical scheme deduced from Eq. (8) leads to a linear system with pentadiagonal
matrices, solved at each step with a standard LU decomposition method %, Its stability is
guaranteed by imposing that the denominator and the numerator elements of the rational
approximation in Eq. (6) are complex conjugates of each other, so that the resulting rational
function is always of modulus one. This second order Padé scheme can accomodate
propagation angles as high as 54°, which is a wider angle than existing finite-difference
techniques having similar cost step per step !5’

The ground is modelled as a locally reacting plane with a complex impedance, which is allowed
to change along the sound wave path. The impedance values are calculated from the single
parameter (air flow resistivity) Delany & Bazley’s model %!,

A nonreflecting boundary condition is imposed at the top of the computational domain by
adding an absorption layer of several wavelengths thickness, so that no significant acoustic
energy is artificially introduced by reflection on the upper boundary of the wave guide.

The initial pressure field required for the initialization of the marching algorithm has a Gaussian
shape, an adjustable width and takes into account the image source weighted by a complex
reflection coefficient.

At last, the mean sound speed profiles are those previously used by Gilbert & White %, but are
now set range dependent :

¢, +a(r)in(z/z,) for z2z,
Co for z<z,

c(r,z)= {

where ¢, =340 m/s, z,= 610~ m (rugosity parameter) and where the coefficient a(r) varies

from -2 m/s for strong upward refraction to 2 m/s for strong downward refraction, with a
linear evolution versus range between two values.

Il. VALIDATION OF THE CODE

The stability and the accuracy of the split-step Padé method have been largely tested for trivial
cases involving both homogeneous ground and homogeneous atmosphere. For the frequency
range [100 Hz ; 5 kHz], for propagation distances up to several kilometres and for different
geometrical configurations, we obtained a very good agreement with analytical methods based
on the ray theory.

The numerical results presented here are those obtained for more realistic configurations,
representative of traffic noise always involving an impedance discontinuity (infinite/finite) and a
very low sound source height (a few centimetres), except when indicated.

We used a vertical step Az of A/4 for the cases of propagation in an homogeneous atmosphere,
and A/6 in an heterogeneous atmosphere. The horizontal marching step Ar is of the order of A
in the case of a constant refraction profile, and A/2 for a range-dependent refraction profile in
order to satisfy the condition on n(r,z) from step to step in Eq. (5). With those last space
gridding values and for a 1 km long wave guide for example, the CPU time on a Sun Ultral
work station (143 MHz) do not exceed 1 minute for 100 Hz and 2 hours for 5 kHz.
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The physical and geometrical parameters involved are defined in Fig. 1 : R

L.

H;

R
Fig. 1 : Physical and geometrical parameters notations

Il. A. Qualitative validation

For concision, we present here only the results for the 4 kHz frequency, for heights up to 20 m
and for distances up to 200 m. Other maps with higher sound source have clearly shown
interference figures, whose number increases with the frequency and with the source height.

Il. A. 1. Homogeneous atmosphere

In Fig. 2 and 3, we have plotted the sound pressure levels (SPL) relative to a reference

microphone placed close to the source. For both figures, the sound source is 10 m high, the
frequency is 4 kHz and the SPL range [-40 dB ; 0 dB], with a color step each 4 dB. In Fig. 2,
the impedance (or flow resistivity) is homogeneous and « infinite » along the whole sound

wave path, while in Fig. 3, the air flow resistivity turns rapidly from 310° KNsm™ (asphalt for
instance) to 3102 kNsm™ (grass) 5 m after the source position in range.

20
E E
) 5
T T
. . |
100 200 100 200
Range (m) Range (m)
Fig.2:f=4kHz ; H;= 107 m; Fig.3:f=4kHz ;H;=102 m;Rq =5m
o1=0;=310° kKNsm™ 61=310° kNsm™; o, =310% KNsm™

For a source very close to the ground (Hs/A<<l) and for homogeneous and acoustically
perfectly hard ground, not any interference figure occurs and the propagation lobes turn

rapidly to plane wave foreheads (Fig. 2).
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The introduction of a breakdown in the impedance (Fig. 3) leads to diffraction of the acoustic
energy on this discontinuity, which then acts as a secondary source role and which generates
new propagation lobes. In comparing Fig.3 to Fig.2, we also observe the intuitive phenomena
that the ground absorption is reinforced and that the sound energy is considerably less
important than in the previous case for the lowest receiver heights. In both cases, the angular
limitation of the method is easily visible.

Il. A. 2. Stratified atmosphere
In this case, we observe the influence on the SPL of an homogeneous celerity gradient, either

negative (a = -1 m/s - Fig. 4) or positive (a= 1 m/s - Fig. 5). Except for the celerity profile, all
the previous values of the parameters are conserved (cf Fig. 3).

20 20
€ 3
= r
(=) =
@ [
X I
T | - T !
100 200 100 200
Range (m) Range (m)
Fig. 4 : upward refraction Fig. 5 : downward refraction
Same parameters values as in Fig. 3 Same parameters values as in Fig. 3

In that case too, the map illustrations are consistent with the intuitive predictions : the main
propagation lobes due to the impedance discontinuity are turned either upward or downward
whether the celerity gradient is respectively negative or positive, and sonorise respectively less
or more the lowest region of the wave guide. The color step is still 4 dB, but the SPL range is
[-60 dB ; 0 dB] for Fig. 4 and [-40 dB ; 0 dB] for Fig. 5. A shadow zone appears on Fig. 4, in
which the sound pressure levels decrease down to -80 dB. Moreover, we verified that the
gradient effects increase with frequency.

Il. B. Quantitative validation

We have shown that the split-step Padé results are consistent with the physical predictions. We
now compare them with other numerical results or experimental data. We want to emphasize
again the fact that the validation of the code for simple cases (either homogeneous ground or
atmosphere) and for the whole traffic noise frequency range [100 Hz ; 5 kHz] has been widely
done by comparing its results with those of an other model developed in the LCPC (program
« DISC »). This model is essentially based on the ray theory. It takes into account the
impedance discontinuity through the Rasmussen technique “*. This model has already been
validated by many experimental data available in the LCPC.

The results presented are those compared to the data found in the litterature, involving more
and more complex cases.
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Il. B. 1. Homogeneous atmosphere - Heterogeneous ground

Craddock & White * have first introduced an impedance discontinuity in a numerical code
based on the PE (finite differences with the Cranck-Nicolson scheme). They validated their
results for two particular geometrical configurations, for which Daigle & al. had made an
excellent review !. Craddock & White compared their results with the predictions according to
Rasmussen 2, DeJong & al. ** and Koers 2. They next chose a SPL representation versus
distance (and thus for a fixed frequency) to better illustrate the jump in the impedance value,
but for which there were neither experimental nor numerical data available for comparison.
Their results for either an homogeneous and perfectly reflective ground (« C&W hard ») or
heterogeneous hard/soft ground (« C&W disc ») are plotted in Fig. 6. and compared to the
split-step Padé results for the same cases (« SSP hard » and « SSP disc »). We also mentioned
in Fig. 6 the results given by the analytical model « DISC » developed in the LCPC.

The agreement between the three methods is excellent, except in the destructive interference
region where the sound pressure levels fall dramatically and where the accuracy in the
geometrical configuration is of primarily importance (since the position of both source and
receiver are numerically determined by the space griding, their precisions decrease with the
frequency). The parameters values are those indicated in Fig. 6.

10

SPL re!. free field (dB)
o

5] a ® DISC(LCPC)
A
[
-10 ' . , ' , ' . ; ,
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Range (m)

Fig. 6 : Predictions according to Eq. (8) compared with Craddock & White s ;
f=160 Hz;H.=1.5m; H=18m;Ry =50m; 6,=210° kNsm™: 6,=210% kNsm™

More recently, M. Galindo ™° compared her PE calculations for long range propagation over
an impedance jump with those given by Rasmussen’s method 22 for two geometrical
configurations. For easier comparison in those particular configurations, we plotted the results
relative to free field versus frequency, issued from numerical split-step Padé (« SSP ») and
finite differences (« CN-PE ») methods, and analytical LCPC (« DISC ») and Rasmussen
(« Rasmussen ») models. The agreement is very good for both configurations. The set of those
numerical data for the first configuration is recapitulated in Fig. 7. The parameters values are

the same as in ref .7 and ref, 10.
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Fig. 7 : Predictions according to Eq. (8) compared with Galindo “™ (configuration 1)
Hi=3m:H,=2m:Rs =25m: R, =100 m; 6:=210%2 kNsm™; 5,=510* kNsm™

7.10

ll. B. 2. Homogeneous ground - Stratified atmosphere

The SPL representation versus distance from the source position for a monochromatic acoustic
sound wave is also treated by M. Galindo *°. She compares her PE calculations (CN-PE) with
Green’s Function Parabolic Equation (GF-PE) data ** and with Fast Field Program (FFP)
predictions ¥, For distances from the sound source up to 1km, the agreement is very
satisfactory. Her results for homogeneous negative and positive celerity gradient are
respectively plotted in Fig. 8 and Fig. 9. The frequency is always 500 Hz and the other
parameters values are as indicated.
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Fig. 8 : Predictions according to Eq. (8) compared with Galindo *°
for an upward refracting atmosphere
f=800Hz ;H;=1.5m; H=2m;o1=0,= 210? kNsm™ ; a(r)=a=-2m/s
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Fig. 8 shows a rapid decay in the sound level, as pronounced with the SSP predictions as with
the CN-PE ones. After 150 m, the levels are less than -60 dB and strong oscillations occur,
with a mean value nearly constant : this is identified with the acoustic shadow zone, where
analytical theories do not predict any acoustic energy. In reality, we now that the atmospheric
turbulence scatter acoustic energy in this region. When the range and the frequency increase,
the introduction of these effects is necessary to obtain reliable numerical predictions. It will be
achieved in a further communication.

The calculations plotted in Fig. 9 have been obtained with exactly the same parameter values as
in Fig. 8, except the homogeneous velocity gradient which turned to +2 m/s. For distances up
to 1 km (in that case, no numerical data exist outside this range) the tendencies obtained with
the two numerical methods are identical, and the respective SPL values are very closed to each
other except, of course, for the destructive interference regions. A slight difference appears in
those values and increases with the distance. The nature of these errors has been presented by
M. Galindo " in terms of a level error introduced by the selection of the starting field, and a
phase error generated by the rational linear approximation [Eq. (6)] and worsened in strong
downward refraction conditions.
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Fig. 9 ; Predictions according to Eq. (8) compared with Galindo
for a downward refracting atmosphere

f=500Hz:;H,=1.5m;H=2m;o01=0,= 210% kNsm™; a(r)=a=+2m/s
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Il. B. 3. Heterogeneous ground - Stratified atmosphere

For this more complex situation involving a sound wave propagating above an heterogeneous
ground (without screen) and through a stratified atmosphere, only upward refraction cases
exist in the litterature. In ref. 3, Bérengier & Daigle compared indoor experimental data
obtained for propagation of sound above a curved surface having an impedance discontinuity,
with analytical predictions given by a residue series solution. The parabolic equation assuming
a far field approximation, we proceed to a scale change in order to compare correctly our
results to theirs. We thus multiply by 10 the geometrical parameters, and divide by 10 the
frequency and the air flow resistivity.

The shorter range numerical (« SSP ») results in Fig. 10 best fit the experimental data (« B&D
exp. ») than their analytical predictions (« B&D th. »). According to the authors, this deviation
beyond the discontinuity could be attributed to setting the edge diffraction coefficient D = 1 in
their model. ,

The discrepancy between the split-step Padé calculations and the experimental acquisitions in
Fig. 10 could be attributed to both the unaccuracy in the experimental air flow resistivity
measurement and in the impedance discontinuity localisation amplified by the scale factor, and
to the very strong linear gradient value (due to the analogy between the sound propagation in
an homogeneous atmosphere above a curved surface and the sound propagation in a stratified
atmosphere above a plane surface).
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Fig. 10 : Predictions according to Eq. (8) compared with Bérengier & Daigle *
for an upward refracting atmosphere and an heterogeneous ground
f=400Hz; H;=H,=0.5m; Ry =15m; 5;=510* kNsm™ ; 52=5 kNsm™ :
a(r) = a = -68.8 m/s (linear gradient until the altitude z= 1.2 m)
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lll. COMPLEX CONFIGURATIONS

If a screen (or other physical obstacle) is introduced along the sound wave path, its presence
considerably modifies the air flow in its close vicinity, and thus alters the celerity gradient.
Rasmussen & Galindo '* have shown that the profile could even turn to its opposite (negative
to positive celerity gradient for instance) above the screen edge. Here, the purpose is to study
such a situation, focusing on the evolution of a refraction profile and the consequences on the
sound pressure levels rather than on the diffraction by the barrier edge. For the moment, the
obstacle is virtual, leaving the global case with a physical screen to a further work.

So, the sound wave now propagates above an heterogeneous ground (impedance discontinuity
at Ry metres from the source) and in a horizontally heterogeneous medium : the refraction
parameter has a constant value until Ry metres from the source, then varies /inearly between
Rir and R, from ays to a,, next from a, to a,, between R, and Ry, and is finally set constant
again, with the value a,,;, below Re,;. The major parameters involved are displayed in Fig. 11 :

aint as asup

a=cst=apy oa(n) a(r) a=cst=ay,

Rint

Weeooooo
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L 3

Fig. 11 : Parameters notations for a typical configuration

Even if the impedance discontinuity and the pseudo-screen positions (Rs and R, respectively)
are set identical in the presented configurations, they are allowed to differ in our SSP code.
The same holds true for the refraction parameters a;s and a.

For the lowest frequencies, the refraction effect is weak and the results are not of prime
interest. In Fig. 12, 13, 14 and 15, we plotted the SSP calculations (SPL relative to free field as
a function of distance) for a refraction parameter either constant or variable along the sound
wave path. The results are firstly presented for a mainly negative celerity gradient (Figures 12
and 13 for the frequencies 1 and 5 kHz respectively), and next for a mainly positive one
(Figures 14 and 15 for the same frequencies). Each time, the homogeneous celerity profile case
calculations are mentioned as a reference. Other parameter values are indicated.
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lll. A. Mainly upward refracting atmosphere
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Fig. 12 : Influence of an upward range dependent refraction profile in the presence of
an impedance discontinuity. f = 1000 Hz; Hs=3102 m; H,=3m;R;=Ry=20 m;
R =10m; Ry =30 m; 61=310° kNsm™ ; 2= 3102 kNsm™
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Fig. 13 : Influence of an upward range dependent refraction profile in the presence of
an impedance discontinuity. f = 5000 Hz ; H;=3102 m; H,=3m:R,=R,=20 m ;
Rw=10m; Rsp=30m; 6:=310° kNsm™ ; o= 310% kNsm™
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lil. B. Mainly downward refracting atmosphere
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Fig. 14 : Influence of a downward range dependent refraction profile in the presence
of an impedance discontinuity. f = 1000 Hz ; H;=3 102m;H=3m;Rs=Rs=20m;
R = 10 M ; Reyp =30 M ; 61=310° kNsm™ ; 52= 310® kNsm™
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Fig. 15 : Influence of a downward range dependent refraction profile in the presence

of an impedance discontinuity. f = 5000 Hz ; H;=3102 m; H,=3m;R,=Rs=20m;

Rt = 10 M ; Rewp = 30 M ; 6y =310° kNsm™ ; 2= 310® kNsm™
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Iil. C. Comments

All the curves drawn in Figures 12, 13, 14 and 15 show numerical instabilities just beyond the
impedance discontinuity, followed by softer « humps » which explain the crossing through
propagation lobes due to the diffraction by the discontinuity (see Fig. 3, 4 and 5). Those
phenomena are all the more pronounced as the celerity gradient value is important. An other
observation is that either a negative or positive celerity gradient value has a delayed effect on
the sound pressure levels. This physical event, due to the source and receiver relative heights,
is already visible comparing constant gradient and variable gradient curves : they are of course
the same until Ryr (10 m for instance) and stay very close to each other even after the celerity
gradient begin its linear evolution. Moreover, considering the relative positions of source and
receiver, the « near field » SPL (generally before the impedance discontinuity) are qualitatively
reversed according to the sign of the celerity gradient : in this region, the levels in upward and
downward refraction conditions are respectively higher and lower than for an homogeneous
atmosphere. This is easily understandable by imaging the upward refracting atmosphere case for
example : in the source vicinity, the negative celerity gradient bends the acoustic rays toward
the receiver and firstly increases the sound pressure levels at this point, before taking place in
the shadow zone (Fig. 12 and 13). In the opposite case, the inverse phenomena occurs (Fig. 14
and 15).

For mainly upward refraction conditions (Fig. 12 and 13), the inversion of the celerity gradient
sign between Rixr and R, brings back acoustic energy with regard to the constant negative
celerity gradient case, and delays the appearance of the numerical instabilities in the shadow
zone. This yields the intuitive result that the SPL stands in this case between the values
obtained in the homogeneous atmosphere case and those obtained in the constant negative
celerity gradient case.

Finally, Fig. 14 and 15 (mainly downward refracting armosphere cases) show strong
interference figures due to the multiple reflections of the acoustic rays on the ground. By
modifying the celerity gradient value along the sound wave path, the position and the
amplitude of these interferences are also altered. This yields complex situations, where the SPL
for a variable celerity gradient is alternatively higher and lower than those calculated with a
constant positive celerity gradient.

IV. CONCLUSION

We have developed an efficient means of allowing the ground impedance and the celerity
gradient to vary with range in the split-step Padé code for the resolution of the parabolic
equation. For a constant (and eventually set to zero in an homogeneous atmosphere) celerity
gradient along the sound wave path, the model has been validated both qualitatively and
quantitatively, for homogeneous or heterogeneous (impedance discontinuity) ground by
comparison with other numerical, analytical or experimental data found in the litterature. The
agreement is generally very good. For the configurations involving strong upward conditions
and long range propagation, the atmospheric turbulence must be taken into account. This will
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be done in a future work, which will also introduce a physical screen along the sound wave
path.

The situations involving a range dependent celerity gradient of sound propagating above a
ground with an impedance discontinuity have not been previously studied. Thus, neither
experimental nor theoritical data exist yet, and that is the reason why results can only be
examined qualitatively rather than quantitatively. Anyway, the variation of the celerity gradient
value seems to have a strong effect on the sound pressure and this numerical study shows that
it has to be taken into account. Controlled experiments are in progress in the Laboratoire
Central des Ponts et Chaussées in order to validate the code for such complex cases.
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ABSTRACT:

We have used the Pierce-Posey-Kinney (P-P-K) normal mode waveguide code which

has been modified at Los Alamos to efficiently search for the WKB acoustic
modes from smaller energy releases of current interest to the CTBT IMS
(Comprehensive Test Ban Treaty, International Monitoring System) program. We
have chosen a specific explosion to simulate, namely the ~60 t energy release
on April 14, 1991 near Moscow that was subsequently detected some 310 km to the

north in Saratov by an array of 3 pressure sensors that was operated by the
Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences.
The array detected three types of signals from

this near-surface explosion.
These included Lamb wave arrivals (L type), possibly Stratospheric arrivals (S
type ) and Thermospheric arrivals (Th type). The simulation also produced three
arrivals, but the Stratospheric type arrived later than expected if it has been
properly interpreted (0.27 km/s signal speed rather than the more typical value
of 0.29 to 0.30 km/s). Computed wave periods and duration of the Lamb waves
were quite similar to those observed, but the computed amplitudes were much too
small (~30X). This close range amplitude deficiency of the P-pP-K code has been
known for some time, but we felt that an attempt to model data at the smaller
explosive source energies, which are of curren

t interest to CTBT, would allow
us to find ways of eventually improving our modal simulations.

I. Introduction and Overview

Historically, Lamb waves from large explosinns have been very extensively
studied because they are the

first distinct arrival with rather large amplitude
and long period at very large detection ranges (ReVelle, 1996; ReVelle and
Whitaker, 1996). For the smaller sources of current interest to the CTBT IMS
program, i.e., ~ 1 kt (TNT equivalent), it is not at all clear that this will
be the case. ReVelle and Whitaker (1996) have shown by systematically analyzing
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the properties of Lamb waves from smaller yield near-surface sources that it is
doubtful that significant Lamb wave amplitudes will be detected at ranges of
interest to the 60 array IMS infrasound system. On the other hand, Busch et.
al. (1997) and ReVelle and Kulcihkov (1997, 1998) have shown that significant
Lamb wave amplitudes can be observed from smaller vield expiosions under the
right conditions, i.e., when the planetary boundary laver (PBL) has a
significant inversion or low-level wind maximum near the surface or further
aloft. To evaluate these possibilities further we undertook 2 discrete wave-
guide modal analysis for one of the small Russian explosive tests conducted at
the Obukhov Institute of Atmospheric Physics near Moscow between 1985-1992.

II. The Pierce-Posey-Kinney: Waveguide Modal Analysis Code

A. The Physics of Normal Mode Analyses

Los Alamos has developed a f

Waveguide Normal mode code (Pier 1976) which has been modified to
search more efficiently for the WKB modes of smaller vield atmospheric
explosions (Hunter and Whitaker, 1998). The gravity waves modes and their
properties have been explicitly neglected during this code development process.
The source function for a 1 kt nuclear explosion is an input to the model in
order to compute, by hydrodynamic scaling arguments for sources that are not at
ground level, the expected positive phase duration and amplitude of the wave
which is subsequently allowed to propagate further to very large ranges. Thus,
in the near field the code is initially calibrated using the theoretical point

source explosion waveform which has also been directly checked by careful
atmospheric measurements.

Briefly, the physics revolves around the sol
equation in cylindrical coordinates for a
stratified, steady state medium having slo
temperature (or of thermodynamic sound sp
isothermal definitions of the atmospheric
acoustic wave-guide cut-off and the Brunt-
the analysis of the resulting linearized s
completely inviscid so that dissipative me

smaller source yields at concomitantly greater ranges at higher wave
frequencies this may no longer be a good assumption however. In a companion
paper, ReVelle (1998) has examined the effects of the non-isothermal resonant
frequency on the predicted skip distance of the Ray-mode theory, etc.

The explosive pulse is then allowed to disperse in the specified atmospheric
model and allowed to propagate as a wave using the complete set of modal
characteristics available form the linearized acoustic-gravity wave theory
(Pierce and Kinney, 1976). All of the ramifications of accurately specifying
the upper and lower boundary conditions, constructive and destructive
interference phenomena, Doppler shifting of the wave frequency by the
horizontal winds, etc. are handled by the P-P-K code. In addition, the code
assumes a large scale atmospheric hydrostatic, non-rotating system with zero
basic state vertical velocities at all levels, etc. Range dependence properties
are no handled with the current version, although there is interest in
extending the code to include this important atmospheric property.

ull working version of the Pierce-p

osey-Kinney
ce and Kinney,

ution of the depth Sseparated wave
point source explosion in a perfectly
wly varying vertical gradients of
eed) and of the horizontal winds. The
resonant frequencies, i.e., the
Vaisalla frequency were used during
et of equations. The analysis is
chanisms are assumed to be small. For
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The code has been thoroughly tested at Los Alamos. One of its

characteristics that has been identified is that

less (<~200-300 km),

long distance, linear code.

at ranges of one bounce or

its predicted amplitude can be greatly underestimated
compared to observations, even from larger yield sources, i.e.,

it is truly a

The mode code produces the steady state phase

velocity versus angular wave frequency for all the acoustic modes specified as
a function of horizontal range and of the azimuth direction towards which the

signal is beamed from the source.

Depending on the whether the signal is heading upwind (counter-wind) or down-
wind (with-wind), the atmospheric modal characteristics are very different. 2
separate synthesis of the amplitude of the waveform is made for down-wind
compared to up-wind propagation, depending on the details of the resulting duct
structure of the atmosphere in the direction(s) of interest. In the down-wind
case, two atmospheric ducts are evident, one from the ground to the top of the
Stratosphere (S type returns) and the other is from the ground to the base of
the Thermosphere (Th type) as discussed in ReVelle and Whitaker (1996) .

For the computer simulations to be discussed below, the following relevant
characteristics have been used for the WKB waveform analysis:

Time resolution of waveform 0.2 s
synthesis

Number of modes 100
Phase speed search 1limits:

a) Downwind

0.345 to 0.378 km/s

b) Upwind

0.379 to 0.70 km/s

c) crosswind

0.345 to 0.70 Xkm/s
Number of intervals for the phase 60
speed search
III. Comparisons of P-P-K Predictions against

Infrasonic Observations on April 14, 19891.

We have set up the Pierce-Possey-Kinne
properties of the signal from the 60

four directions, i.e.,
and finally for 5 degre
fixed horizontal range
measurements made at Saratov b
Atmospheric Physics of the Rus
included Lamb (L type),
waves recorded at a 3 el
separation between eleme
condenser microphones wi
noise reduction devices
these tests. Shots were repea

y (P-P-K) code to analyze the

T test (TNT equivalent) near Moscow for
5 degrees E of N, 5 degrees S of East, 5 degrees W of §
es N of West. All pressure waveforms were evaluated at a
of 310 km corresponding directly to the array

¥ personnel of the Obukhov Institute of
sian Academy of Science. These observations
Stratospheric (S type ) and Thermospheric (Th type)
ement array of pressure sensors with a baseline
nts of about 20 m. The basic sensors were B&K NO. 4147
th a frequency response from 0.02 Hz to ¢ XHz. No
were used during the infrasonic detection of any of

ted quite frequently with four shot
been detonated on this particular day.

s total having
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A. Discussion of Vertical Temperature and Wind Profiles

The following vertical profiles were used during the analysis:

a) Boundary Layer Profile: Vologograd
0000 GMT, 4/14/1991 (3 am Moscow time)

b) Middle Atmosphere Temperature and wind profile:
Vologograd

0128 GMT, 4/17/1991

In Figure 1. And 2. below we have plotted the vertical profiles of the

measured temperature and of the horizontal winds in terms of the zonal and
meridional components that were measured during this time period. The winds
above the Tropopause were actually measured about 3 days after the shot origin
time. These winds were characterized by a strong meridional jet near the
Tropopause of almost 20 m/s to the North and an almost equally strong zonal
wind to the West at about the same height level. In the Stratosphere, there was
also a 40 m/s zonal jet heading Eastward at about 55-65 km altitude and a
weaker meridional jet peaking at about 50 km at about 20 m/s with vector windg
to the South. The combination of these features with the sound speed profile
discussed below produced a Stratospheric wave-guide to the East and to the
South during the time of this test. Thus, directions to the North and West of
Moscow, such as Saratov were in a zone of acoustic shadow for Stratospheric
ducting during this time period. For @ return at 0.29-0.30 km/s as expected
from the Stratosphere (ReVelle and Whitaker, 1996), we expect an arrival time
of ~1033-1069 seconds at 310 km range. For Thermospheric returns, we expect an
arrival time at this range of ~1292-1409 seconds, corresponding to possible
signal speeds of 0.22-0.24 km/s. For Lamb waves we correspondingly expect

arrival times of ~886-912 seconds, based on a signal speed of about 0.34-0.35
km/s for these waves.

There may also have been small chan
Stratosphere since they were recorded some 3 days after the shot. Generally
these large scale features tend to remain relatively stable on a time scale of
many days, except during rapid changes in the Spring and Fall such as Sudden -
warmings etc.

ges in these wind systems in the

The measured air temperature (or therm
1. are characterized by a strong temperat
K/km) in the PBL at quite low levels, i.e., at about 200-250 m above the
ground. This was the consequence of a strong nocturnal temperature inversion
that developed during the nighttime hours. Even with the strong positive
gradient the effective sound speed that was calculated near the ground did not
exceed the ground level effective sound speed so that an effective low-level
acoustic duct was apparently not evident during these tests. As dawn approached
however changes in the boundary layer may have also changed the ducting
possibilities of the lowest kilometer of the atmosphere which may have

contributed to the variable amplitudes of L and S type returns that were
observed throughout the testing period.

odynamic sound speed) shown in Figure
ure inversion (~ +7 to +15§ degrees
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Above 80 km, model winds and

temperatures were provided by Kulichkov and
colleagues since there was no da

ta available above this level.

B. Comparisons With Observations

In order to illustrate the

propagation variability as a function of the
azimuth launch angle,

we have decided to pick four directions each 90 degrees
apart, starting at the known location at 310 km range at a direction of §
degrees East of North in order to compare results.

In Figures 3.-6., we have plotted the P-P-K normal mode calculations in the
respective directions indicted in the table below. Examining our simulated
arrival times from P-P-K, we have the following distinct arrival types for each

of these propagation directions, with approximate peak to peak amplitudes
INDICATED in microbars.

Lamb Stratosphere Thermosphere
a) 5 degrees 0.5 ? 3.6
b) 95 degrees < 0.1 9.6 3.9
c) 185 degrees 0.35 0.50 4.0
d) 275 degrees < 0.1 --- 9.0

Thus, our P-K_P results indicate what w
basis of the available temperature/sound
profiles, i.e., a Stratospheric duct exit
Moscow during these tests.
1000 - 1050 seconds as indi
with The nominal arrival ti
Thermospheric duct is possi
because all the available
duct. Only the Stratospher

as mentioned briefly earlier on the
speed and horizontal wing speed

ed to the Bast and to the South of

The arrival time of Stratospheric signals is about
cted in Figures 4. And 5. This is fully consistent
me range indicated earlier. To the West, only a

ble with the ground and this duct is very strong
acoustic energy in this direction is confined to this

ic return at a direction of 95 degrees is slightly
larger than the Thermospheric amplitude at a direction of 275 degrees. The

predicted Lamb wave return at a direction of 5 degrees, although much smaller

than the observed signal at Saratov has the largest computed amplitude for all
four directions that were considered.

There is also a distinctive feature tha
arrival time of about 1150 sec,

in origin. This return has a sig

t appears in Figures 2 and 4 at an
which is clearly too late to be Stratospheric
nal speed of about 0.27 km/s, which is too
large to be a typical Thermospheric type return. Based on this value of signal
speed all we can say is that it is consistent with being a return from the
region between 50 and 100 km, i.e., from the Mesosphere.

The detonation site was located at 48.78 N and 45.74 E (near Moscow) and all
infrasonic recordings were made at Saratov at 51.54 N and 46.03 E, some 310 km
away and at a bearing of about 5 degrees E of N.

The Saratov recordings all showed evidence of returns from Lamb waves, and
also returns from the Stratosphere and from the Thermosphere ducts as well. aAs
discussed in ReVelle and Kulichkov (1997), the measured Lamb wave to
Stratospheric type amplitude varied quite irregularly during the four tests on

the early morning of 4/14/1991. The registered Lamb wave amplitudes, periods
and duration during these measurements can be summarized as follows (ReVelle
and Kulichkov, 1997):




4/14/1991 Lamb wave Lamb wave Lamb wave Lamb wave
signal amplitude: period: duration:
speed: km/s Pa seconds gseconds
To=09:35 ¢MT |- 0.34 1.8+ 1.8 8.0
To=10:05 GMT 0.34 1.5 0.9 5.6+
To=13:15 GMT 6.35 |  -.... 2.4 13.3+
To=15:20 GMT 0.33 |  -.-.. 2.4 7.8

The Lamb wave amplitudes that were meas
times compared to the amp
the experiment. For the
2.25 times greater than
its amplitude was only o

Our predicted Lamb
30X), although their pe
this is the first test
close range. A. Pierce,
commented that the predi
Further tests are clearl
factor that needs to be
shock matching range tha
originally setup to exam
kt and greater and at ve
source function for thes
amplitude or period,
part of the current 4

ured varied by a factor of up to 4.5
litude of the measured Stratospheric returns during
earliest test shot on this date, the Lamb amplitude was
the S type signal whereas for the shot at 15:20 GMT,
ne-half as large as the § type return.
wave amplitudes are clearly much too small {(by about
riod and duration are not too unreasonable given that
of this code at these very small yields and at such a
the original developer of the numerical code, also
cted amplitudes should improve at much longer ranges.
Y needed to verify all of these predictions. Another
examined is the original waveform needed at the weak
t is already provided in the P-P-K code. This code was
ine nuclear explosions for yields of many hundreds of
ry long ranges from the explosion. If the equivalent
e tests was significantly different in either scaled
these source function parameters could produce at least
iscrepancy between theory and experiment as well.

Iv. Summary and Conclusions

A. The Pierce-Posey-Kinney Normal Mode Code

We have made four computer simula
code to evaluate the amplitude,
small yield, near-surface chemic

tions using the P-P-X normal mode waveguide
period and duration of infrasonic signals from

al explosions at very close range, i.e., ~310
km. This test allowed us to use our WKB mode evaluation system for four

directions surrounding the source so that the differences in propagation in
each of these directions could be systematically examined. All three types of

wave arrivals, i.e., L, S and Th were predicted in differing directions and
with different amplitudes, periods and duration.

B. Comparisons against Infrasonic Observations on April 14, 1991

We have compared our predictions against the Russian measurements made at
Saratov on April 14, 1991. In general we find a much weaker Lamb wave signal
than was measured. We have known for a long time however that the P-P-K code
results at such a close range would be expected to be quite low compared to
reality. Further detailed tests of the code with additional data is clearly
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warranted so that the degree of agreement between theory and observations can
be steadily improved for such small yvield sources at quite short observation
ranges.
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A PROPAGATION MODEL BASED ON GAUSSIAN BEAMS THAT ACCOUNTS FOR WIND
AND TEMPERATURE INVERSIONS

R. L. Bronsdon {1] and H. Forschner [2]

[1]  Walt Disney Imagineering, 1401 Flower Street, Glendale, CA 91221, USA
[2]  Navcon Engineering Network, 701 W. Las Palmas Drive, Fullerton, CA 92835, USA

1. INTRODUCTION

The model discussed has sought to more accurately predict sound propagation in inversion conditions so
as to provide an engineering tool for the placement of sound sources in sensitive urban environments. It is
based on Gaussian Beams to preserve the fundamental concept of a propagation path which allows the use
of standardized calculation routines for barrier insertion loss. Validation studies have shown that
continuous variations in wind, temperature, and ground absorption all along the propagation path have
profound effects on the received level. Any model which fails to deal with these parameters is not likely to
have much success in accurately predicting the impact of a sound source on the community. This paper
will present results from the validation testing and compare them with results both from the Gaussian
Beam and PE models.

2. THE GAUSSIAN BEAM MODEL AND SOUNDPLAN

The Walt Disney Company and Braunstein and Berndt GmbH, the company producing the SoundPlan
program, have undertaken to develop a more accurate model for long range sound propagation. The
problem faced by many noise producing activities in urban environments is that certain atmospheric
conditions, temperature inversions and wind, tend to either reduce or totally eliminate the effectiveness of
noise barriers leading to complaints in the surrounding community. Traditional models such as the
General Prediction Method (GPM) and the German VDI 2720 account for this bent path propagation by
employing an empirical curved path based on an arc. This curved transmission path is used to calculate
barrier insertion losses in place of a straight path and degrades the barriers effectiveness.

Experiences at current installations indicated that the standard approaches tended to underestimate the
amount of sound which reached the community by a considerable amount. The problems occurred during
times of strong radiational cooling; clear skies and very low wind. The apparent effect was obviously
related to a more strongly downward bending sound field but the GPM and VDI are only calculated for
one meteorological condition. The CONCAWE method does attempt to account for various types of
conditions but the corrections are based on experimental data and, being anecdotal in nature, are applied as
a constant degradation behind the barrier.

An approach was developed with Drs. Ken Gilbert, Xiao Di, and Alan Stuart which is based on the
concept of Gaussian Beams. The basic program, Gausbeam, calculates the beam paths for a given set of
temperature and wind conditions for a full 180 degrees around an arbitrary sound source of known height
above an absorptive plane. This model has the benefit of preserving the concept of propagation path while
enabling a path computation based on actual conditions. The path and Transmission Loss data are then
handed over to the SoundPlan program which calculates barrier insertion losses based on the newly
calculated curved paths. Gausbeam employs the concept of Similarity in determining from either two or
three temperature data points and two wind data points what the average sound speed profile will be for
each angle relative to the direction of the wind. SoundPlan then employs these path calculations in the
generation of noise estimates and grid maps.

Figure 1 shows that the Gausbeam path estimate for a range of 2200 meters is considerably higher
than the GPM. This means that the actual barrier insertion loss should be considerably lower than the
GPM would predict. As inversion conditions strengthen, the arch becomes more pronounced and more
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and more receivers are exposed to propagation paths which are unaffected by the barriers which normally
provide some relief.
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Figure 1: Comparison of Gausbeam and GPM Propagation Paths

The output files generated by Gausbeam are shown in Figure 2. Figure 2.a shows the
temperature and wind profiles for a typical inversion condition. If wind is a factor, the program
must then calculate a sound speed profile for each ten degree increment for 180 degrees around the
source as the effect of the wind on the sound speed profile will be dependent on the aspect angle.
This is shown in Figure 2.b. The predicted propagation paths and the TL are shown in Figures 2.c
and 2.d respectively.
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The SoundPlan model takes the aspect angle into account when looking up the propagation path
information for every source/receiver combination and can either do a point to point calculation for
a specific receiver, or generate a grid map for an entire project area. Figure 3 shows a grid map for
the testing done in Anaheim. The sound shadow of the buildings and the effect of the inversion can

be clearly seen.
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3. VALIDATION TESTING

Validation testing was undertaken at the end of 1997 to provide both validation of the modeling
technique and also hard data for final programming modifications. Tests were performed at both
Edward’s AFB and in Anaheim at the Disneyland facility. The tests at Edward’s made use of a
simplified environment with a flat ground plane and a single building as a barrier. The source was a
single speaker playing band limited pink noise. Logging sound level meters were placed at intervals
along a straight line behind the building. Meteorological data was collected continuously at four
heights and logged on a ground station for the duration of the testing. Similar systems were
employed in Anaheim, as shown in Figure 4, but the locations of the sound level meters was dictated
by the roads and buildings and were, therefore, more dispersed. Sound data were collected out to a

speaker array

Figure 4. Testing setup in Anaheim

Figure 5 compares the testing results from Anaheim with the varions prediction models
available in SoundPlan. The data points are averaged received levels for the two minute tests at 500
Hz. There were ten tests in all over one nights testing. The black data points represent the highest
level received during that test period, independent of the time period over which that maximum was

experienced. Overall, there is excellent agreement between the predicted average performance from

Gausbeam and the measured average performance. The General Prediction Method tracks almost as
well with better predictions at short ranges and more error at long ranges. The CONCAWE and
VDI standard both seem to do a poorer job of predicting the résults. None of the models is
consistently predicting the maximum. The VDI does appear to come close at several locations, but
the prediction is not consistently high.
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Figure 5: Comparison of Test Results and Predictions for Anaheim Testing

All of the models used were designed in some way to account for inversion propagation so they
each show some modification to the barrier insertion loss at increasing range. The variations reflect
the appropriateness of each models assumptions as to what constitutes an “average” condition, and
how that average condition relates to the actual conditions experienced on the night of testing. The
advantage that Gausbeam has over the other models is that actual meteorological conditions can be
used. The grid map shown in Figure 3 demonstrates another important consideration. When wind is
a strong influencing factor, as it is almost always bound to be, Gausbeam can provide accurate
predictions and even show upwind ducting as a function of angle relative to the wind. None of the
other models takes wind into account at all. The accuracy of the other models is due in large part to
the fact that the wind, which was a strong factor in the actual inversion that was experienced on the
night of testing, was predominately blowing from the source to the receivers. If the wind had been
blowing from the receivers to the source, the other models would have failed to predict the upward
bending sound field and would therefore have strongly over predicted the results.

The detailed analysis possible with SoundPlan allows one to determine what constituents are
most important in determining the received sound level at each location. The model is quite
sensitive to local barriers at both the source and receiver, ground attenuation, and local reflecting
surfaces. We found that placing the houses around the sources was important as at least one
measurement location was in the shadow of a two story house and another was impacted by
multifamily units. The inclusion of these barriers reduced the level considerable, but extraneous
houses also added as much as 5 dB in reflected sound to the prediction.

Figure 6 shows how received levels varied over the time of one test in Anaheim. The conditions
during these tests were dominated by a subsidence wind from the mountains out to sea. This wind is
characterized by a pronounced increase in wind velocity just above tree level to a height of about 50
to 60 meters where it then returns to a velocity which remains fairly steady with increasing height.
The large fluctuations in level are most likely due to short term fluctuations in the wind. Figure 7

258



259

shows how variable the wind was during the testing. This plot displays wind speed and temperature
as a function of height. It was obtained by raising and lowering a single sonde on a tethered balloon.
The ascent and descent required about 13 minutes each so the data represents the variability over
less than one half hour.
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Figure 6: Variation in Received Level with time in Anaheim

The data points represent the average wind and temperature data for the time period of each
test. The curves show how the instantaneous wind and temperature deviate from the average. A PE
model was run with the inputs shown in Figure 7. The results are shown in Figure 8. It is clear from
this that variations in wind speed profile could have accounted for the short term fluctuations in the
received level.

These fluctuations are caused by sound channels, or elevated ducts, which form and dissolve as
the wind conditions change with time. It is clear from Figure 5 above that average conditions do not
always predict the impact of noise on a surrounding community. The response to a level near 50 in
a urban environment is probably going to be a lot less severe than the response to levels in the high
60’s. These sound channels may only exist for less than a minute but the impact is profound. The
problem is that in an urban setting, there is almost always somebody sitting in the HOT ZONE when
a sound channel forms.
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Figure 7: Meteorological Profiles Measured in Anaheim

Elevated ducting of sound explains much of the short term variability that is experienced in the
measurements, but it can also be extended to any other type of measurement over long distances.
Most notably, highway, rail, and aircraft noise measurements would be severely impacted by this
type of propagation. In fact, we have all had experience with these types of phenomenon although it
has not been well documented. Who has not had the experience of perceiving that suddenly a noise
source, perhaps a train or a highway, seems to have moved closer or heard the sound of a passing jet
airplane ebb and build far out of proportion with the airplanes path of flight.

This is not similar to the inclusion of a random variable disturbance in a2 PE computation, but
rather, a specific, large scale, disturbance in the meteorology of the sound propagation medium.
These disturbances are on a much smaller scale than those that affect long range sound propagation
in the ocean, but their affects are pronounced. Extreme variations in level are possible, and in fact,
have been experienced by many who have tried to document noise levels.
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Figure 8: PE model results for Anaheim tests

4. CONCLUSIONS

The validation studies have shown good agreement between predictions and measurements for
inversion conditions when modeling long term averages of wind and temperature and comparing the
predictions to long term averages of received level. These predicted results now provide for a
design which in not only functional in benign meteorological conditions, but one which functions in
the more difficult inversion conditions. There are, however, short term fluctuations in these
parameters which can lead to large increases in the received level. Complaints from the surrounding
community are frequently a response, not to average levels which exist for most nights of the year
and which may well conform to community noise regulations, but to seasonal peaks which clearly
do exceed the regulations. The straw that broke the camels back so to speak. A noise containment
design must surely deal with averaged parameters as well, but those special nights can now be
predicted based on real conditions existing at the site on a regular basis.

The Gausbeam model has been developed to provide a more accurate tool for calculating sound
propagation over distances of many kilometers based on actual meteorological conditions. It is an
excellent design tool that allows the user to evaluate the effectiveness of barriers and reflectors all
along the propagation path. The model can not deal with ducted propagation down wind because
there is no provision for putting arbitrary sound speed profiles into it but that does not reduce the
effectiveness or usefulness of the predictions. If a noise control design is successful in controlling
emissions which could potentially be bent downwards by temperature or wind inversions, then that
design will also avoid exciting potential ducting paths. Our experience has been that problems of
noise intrusion into the community are normally related to either a clearly definable breach in the
sound containment system or a specific, well defined, set of meteorological conditions. The trick
will come in being able to accurately describe those conditions so that the model predicts the true
impact of the sound source. This means that predictions need to be made based on meteorological
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conditions which represent the typical worst case and not the yearly average. It also means that
demonstrations of a sound containment system should be carried out under realistically difficult
conditions as opposed to conditions where the atmosphere is either benign or even providing
additional insertion loss. A direct result of this, of course, is that testing usually has to be carried
out at night.

Sound propagation models may well eventually be based on three dimensional PE style
computations where the PE and the Physical Space model are integrated together. Any model which
ignores the actual wind and temperature profiles which are likely to exist is not likely to have much
success in predicting the real sound pressure levels to which the community is responding with
complaints. Current research is directed primarily at defining accurate models which are based on
the physical laws that govern sound propagation. This represents just the first step in more accurate
predictions. Results from the testing in Anaheim clearly show that meteorological models are of
equal importance if one wishes to accurately predict the impact of a sound source on the
surrounding community.
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ON THE DEVELOPMENT OF APPROXIMATE MODELS FOR OUTDOOR SOUND
PROPAGATION

Karsten Bo Rasmussen, Dept. of Acoustic Technology, Building 352
Technical University of Denmark, DK-2800 Lyngby, Denmark
Phone: +45 45 25 39 39 Fax: +45 45 88 05 77 Email: kbr@dat.dtu.dk

ABSTRACT

The suitable prediction model for outdoor sound propagation depends on the situation and the
application. Computationally intensive methods such as Parabolic Equation methods, FFP
methods and Boundary Element Methods all have advantages in certain situations. At present,
none of these approaches are able to handle all the relevant aspects of propagation such as
terrain features, atmospheric wind and temperature gradients and turbulence. How much wind
can be tolerated when a model based upon a still homogeneous atmosphere is used? How
does a terrain feature affect the sound propagation? An attempt is made to answer these ques-
tions and to obtain an increased understanding of the limits between which various ap-
proaches are applicable. This should help identifying the more promising approach for vari-
ous applications.

INTRODUCTION

When outdoor acoustics are dealt with, a range of different calculation models are developed
and used for various purposes including thermodynamic air absorption, prediction and analy-
sis of outdoor sound fields with varying demands for accuracy and under different conditions.
By nature, theoretical models deal with simplifications, and models predicting the interaction
of the field from a point source with a surface having finite impedance are no exception.
Computer models dealing with clear-cut cases such as propagation over a level ground sur-
face with or without the presence of a screen and with or without the influence of wind and
turbulence have been developed and will continue to be improved. Such models are usually
tested in cases where the parameters investigated have a very significant influence of the re-
sult. The purpose of the present work is to investigate some limiting cases where the scenario
falls between the simple categories. Two fundamental cases are looked into. The first case is
an impedance surface which is almost but not quite level. The changes in level are not easily /
taken into account using analytical mathematical models except for Boundary Element Calcu-
lations which are time consuming. The second case is the limiting case of weak wind over an
impedance surface. For short distances the influence of the wind speed is marginal and does
not always behave according to conventional theory based upon effective sound speed pro-
files. The insertion loss of screens under the influence of wind is also commented on.

The purpose is to obtain some guidance as to how much measurements are influenced by
such irregularities that will inevitably occur in practice. Such knowledge is useful in relation
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to the applicability of existing calculation models as well as for the development of new mod-
els.

COMPLICATED TERRAIN GEOMETRY

The only well investigated case of complex geometry is the case of a simple screen. In this
case various approximations can be used in order to obtain simulated results for the influence
of the screen'?. In this section we shall look into experimental data for a terrain where part of
the surface is lowered slightly in comparison with the general level of the terrain (ditch-con-
figuration). This case could be solved by means of Boundary Element calculations, but such
an approach is impractical for longer distances or higher frequencies. An alternative approxi-
mate approach has been developed by Plovsing®* by means of Fresnel zone interpolation of
different solutions for a simple plane ground, as previously developed by Hothersall and
Harriott® for the case of impedance variations.

The terrain geometry for which experiments have been performed is described in figure 1 and
measured and calculated results are given in the time domain as well as in the frequency do-
main in the figures 2-6. The measurements have been carried out in a scale model based
upon a 1:25 scaling ratio. The ditch is made of plywood and covered with fabric in order to
obtain a suitable impedance (0=20 kNsm™* and d,= 0.0167 m in the 2PA model®). All dis-
tances and frequencies and impedances refer to full scale. Details about the scale model set-
up may be found in Rasmussen.

Figure 2 shows time domain results for the ditch geometry. The measured data are from the
scale model experiment, and the simulated data are based upon calculations for level terrain.
The dashed curve is based upon calculations where the heights are taken from the bottom of
the ditch instead of from the top. Obviously neither assumption is correct, and the first part of
the measured response resembles the results for increased heights, whereas the latter part re-
sembles the data for the original heights. This indicates that both terrain levels are at play and
it actually turns out that the specular point of reflection is located on the terrain slope repre-
senting the transition between levels on the receiver side of the ditch.

The frequency domain results in figures 3 and 4, representing a 0.5 m receiver height, show
that the measured data agree well with the Fresnel zone approach and that both terrain levels
influence the results. For the 0.5 m receiver height the specular reflection point is located on
the terrain slope, as mentioned above, whereas it is located in the bottom of the ditch for the
cases of 1 m receiver height. Therefore the results for the greater receiver height (figures 5 *
and 6) should be well represented by the calculations for plane ground for increased heights
(taking the bottom as reference) in the case of high frequencies, where the Fresnel zones are
small. This is especially clear for the 15 m case, where the ditch occupies at larger proportion
of the propagation path.

The overall picture is that a level change of 0.38 m leads to very significant changes in spec-
trurn at the receiver point. The sound pressure level is affected from the low frequency dip
and upwards in frequency. The results shown here, and additional results for as single change
in level along the propagation path support the validity and usefulness of the Fresnel-zone
calculation. As a more precise alternative to the Fresnel approach, Parabolic Equations could
be used in combination with a field extrapolation technique’. This approach would be more
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efficient for long distances than the choice of Boundary Elements®, but it would suffer from a
potential source of inaccuracy because of the field extrapolation necessary when downslope
propagation is involved’. Calculation methods based upon diffraction theory have been suc-
cessful in many cases’ but are not well suited for taking small terrain features into account
since they rely on obstacles having physical dimensions greater than one wavelength.

ON THE INFLUENCE OF WIND

The figures 7-11 demonstrate the influence of moderate wind. The measurements are carried
out in model scale for a surface representing a full scale impedance of 0=7 kNsm™ and d =
0.0160 m in the 2PA model®. All parameters are referred to full scale conditions rather than
model scale. The source height is1.5 m. The wind speed was about 4 m /s, see figure 7. The
measurement procedure is described in Rasmussen'®. Simulations for no wind and measure-
ments for no wind are included for comparison. Simulations using Crank- Nicolson PE-calcu-
lations™""*? are included for the logarithmic sound speed profile.

For the 15m distance the measured curves with and without wind follow each other closely
until frequencies around 1kHz, whereas the deviations occur even for low frequencies for the
30 m distance. The influence of wind at lower frequencies is not predicted accurately by con-
ventional state-of-the-art calculations, employing an effective sound speed gradient, as may
be seen from the simulated data present in the figures for 30 metres. For the short distance of
15 metres, PE- type calculations suffer from near field problems at low frequencies. These
deviations are moderate but in order to keep the focus on the influence of wind, the simulated
data for no wind is also based upon PE-calculations. Hence, both simulated curves are subject
to the same near field deviations and the wind is seen to have negligible effect. This means
that theory predicts essentially no influence of this wind speed profile at low frequencies for
15 m as well as for 30 m, whereas measurements show that the wind does affect the levels at
low frequencies for the 30 m distance.

The wind speed profile taken into account in these figures is given by,
v=v in(z/z,) 1

where v,= 0.434 m/s and z;= 0.000108266.

Figures 12 and 13 show measured data compared with PE-calculations. The measured data '
are from Rasmussen'® and were carried out in full scale over a grassy area. The same trend as
for the above scale model results is seen in these full scale data for grass covered ground. The
influence of wind at low frequencies is clearly more pronounced in measured data than in
simulated data. These low frequency deviations occur regardless of the use of FFP type calcu-
lations' or PE type calculations. The difference between measured and calculated data could
be caused by the precise shape of the sound speed profile, but this is unlikely, since simula-
tions show that low frequency data are insensitive to the exact shape of the profile'*. The de-
viation is probably due to the limitations inherent in the effective sound speed profile ap-
proach. The primary reason for this deficiency in the state-of-the-art calculation methods is
probably the symmetry around the source which is assumed in the models and which is not
present under windy conditions. Further research into calculation methods taking wind into
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account appears to be needed's.

The wind speed profile used in the simulations representing these full scale measurements
was determined by vg= 0.402 m/s and z,= 0.02 for downwind and by v,= -0.322 m/s and z,=
0.02 for upwind.

The figures 14-16 provide a brief illustration of insertion loss of screens under windy condi-
tions. The data originate from recent scale model experiments'!. It is seen that even very
moderate wind speeds produce very significant changes in the insertion loss. These changes
may be estimated by means of range dependent PE-calculations taking not only the wind
speed profiles but also the estimated rate of change of these profiles as a function of range
into account. Such results are shown in Figure 16. With some support from flow measure-
ments the wind speed profiles have been assumed to be logarithmic even close to the screen.
The wind speed function as a function of distance was found by means of interpolation be-
tween parameter values (v,2,) obtained in positions before, over and after the screen. The
interpolation took place in a zone beginning 5 m before the screen and ending 15 m after the
screen. Turbulence has been ignored in these calculations. These results are described in de-
tail in Rasmussen and Galindo'!.

CONCLUSION

When sound propagation in still air is considered, a change of height in the terrain may have a
considerable influence even when the wavelength is as long as five times the change of
height. A very useful first order approximation may be obtained by Fresnel-zone
interpolation®®. More precise calculations must be based upon Boundary Element approaches
or Parabolic Equation approaches.

When plane ground is considered, wind speeds of 2-4 m/s may influence the sound pressure
level for distances as short as 20 m. This influence is stronger than predicted by the common
effective sound speed profile interpretation of the wind and further research is needed.

When the insertion loss of screens is considered, even very moderate wind may have a 10 dB
influence on the result. Any new screen design should therefore be tested for performance
under the influence of wind.
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Figure 1. Terrain profile. d,= 9.4m/1.9m; d,=3.8m; d;=3.8m; d,=3.8m; d;=9.4m/1.9m;
d=0.38m; h,= 1.5m. Impedance is given by 6= 20kNsm™ and d,=0.0167 m in 2PA model.
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Figure 2 Time response for ditch for 15 m distance. Re-
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lation for plane surface. Dashed curve: calculation for pla-
ne surface using increased heights.
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Modeling Outdoor Sound Propagation with Modeled Weather
Data

Brian Magill and David Swanson

The Applied Research Laboratory
The Pennsylvania State College
P.O. Box 30, State College, PA 16804-0030

ABSTRACT

A method is described for obtaining the atmospheric and environmental data
necessary for accurate outdoor sound propagation modeling from databases available
on the World Wide Web. In order to achieve reasonable results, outdoor sound
propagation modeling requires accurate wind and temperature profiles to a height
equal to at least 1/10" the propagation distance of interest. In past measurements,
these profiles have been obtained from SODAR and RASS measurements. Under
many circumstances, however, it may not be possible or even desirable to make these
types of measurements on site. Currently, modeled weather data is being generated at
the National Centers for Environmental Prediction on an hourly basis that contains
atmospheric profiles for the Continental United States. The present research studies
the feasibility of using these profiles, available on the Internet, for outdoor sound
propagation.

One problem faced by researchers trying to predict how sound will
propagate outdoors is access to upper atmospheric measurements. While it is
quite easy to measure quantities such as temperature, wind speed and direction,
and relative humidity at the surface and a few meters above the ground, it is
can be quite expensive to use equipment such as radiosonde weather balloons,
RASS (Radio-Acoustic Sounding System), and SODAR to determine
meteorological quantities at higher distances in the atmosphere. There are
some situations where it would be cumbersome to transport this additional
equipment to a particular site as well. An alternative is to use modeled weather
data. Currently modeled data are available for all of the Continental United
States as well as part of Mexico and Canada. These models are on the
mesoscale level so local weather variations have been averaged out. This
could lead to lead to problems for situations where the site is along a lake or at
the transition from a field to a forest. These variations have less effect as one
goes higher in the atmosphere. This paper will discuss recent developments at
the Advanced Sensors Group in the Applied Research Laboratory, Penn State
in using modeled weather data to predict sound propagation.
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Several types of weather data are currently being generated by the
National Ocean and Atmospheric Administration (NOAA). Most, like the
ETA, and NGM are for large-scale frontal systems. There have a grid spacing
of 100 km or more and are generated at intervals of at least 6 hours. The Rapid
Update Cycle (RUC) model”), however, is generated on an hourly basis and a
grid length ranging from 33km to 46km. RUC was developed by the Forecast
Systems Laboratory and is run operationally by the Nation Centers for
Environmental Prediction (NCEP). RUC uses a Lambert Conformal projection
and has dimensions of 151 by 113 grid points. Vertically RUC data is
available from the surface to 16 km. For isobaric levels it is available from
1000 down to 100 mbar. The 1000 mbar isobar is generally at a height from
100 to 200 m. RUC data is derived from radiosonde measurements, aircraft
reports, wind profilers, surface observations, and satellite data. Data generated
during the previous run is also fed back into the model. Every time the RUC
program is run, an analysis of the United State’s weather at the time the data
was ingested is generated along with forecasts for the next 1 to the 12 hours. It
takes roughly an hour to run the model. RUC files have a GRIB (Gridded
Binary) format, which is an international standard, set up by the World
Meteorological Organization (WMO). All records after the header record are
self-contained. All grid points for particular type of data are stored together.
The first section of any record describes the type of data stored, the type of
levels (isobaric, isentropic, etc.), the level stored along with parameters such as
station ID, date and time, forecast hour, and flags for the presence of mapping
information. Since RUC data is mapped, each record contains a section with
parameters describing how this mapping is set up. The RUC model calculates
a considerable number of atmospheric quantities. The ones of interest in sound
propagation are temperature, u and v wind speeds, and the relative humidity.
(u and v winds are the components of the “east-west” and “north-south” winds,
respectively) Certain quantities such as surface temperature might be useful
for gross quality checks. Since the RUC data is calculated for fixed isobaric
levels, height and isobaric information need to be stored as well. These data
files are available to the public on NOAA’s OSO server, which at the IP
address 140.90.6.103 on the Internet. It generally takes a few hours for RUC
data files to be transferred to the OSO Server. The server is generally down
from around 1:00 to 3:00 AM in the morning. Over the past summer, data
transfers from this server have been reliable at all other times, however.
Typically RUC data is only kept for the past 24 hours.

Here, at the Advanced Sensors Group at the Applied Research
Laboratory, RUC data files are downloaded automatically every hour from the
OSO Server to a Pentium PC running Windows 95. The FTP session itself is
controlled by a Perl script. If the process is successful, The script calls a C
program which goes through file searching for records of isobaric data for
height, temperature, wind speed and direction, and relative humidity. When a
record of isobaric data is found, the program records the isobaric level and type



of data, and extracts the modeled data for the specified grid points. The data is
then written to an ASCII text file and to an MS Access database.

MS Access is inexpensive, readily available and is to a certain extent a
relational database. Relational databases have several advantages over
hierarchical databases and text files. It enables database design with less
redundant storage of information and chances that the database will be updated
improperly. The technology is well established and has been used for a
number of years in the business world. SQL, a language for manipulating and
querying databases, is the standard for relational databases. It is easy to use,
particularly for simple queries. Probably the most important feature is the ease
in which data can be extracted from a relational database and displayed in
many from many points of view. For example, a series of flat text file of RUC
data could be written each which contain isobaric level, height, temperature,
and wind information for a specific date. This is all the user needs if he wants
to use upper atmospheric data for sound propagation calculations. It would be
quite cumbersome to use these files to follow how the wind speed and direction
evolve with time for a given isobaric level, however. One would have to write
a program to scan each file, extract the specified isobaric level, order the
information, and display it. Using a relational database, both queries could be
done with a single SQL command. In a relational database, data are not stored
with any preferred ordering or point of view. These features are controlled by
the SQL statement at run time. SQL also can be used to find averages,
standard deviations, and other aggregate quantities for a given attribute like
temperature. This is also quite useful for examining spatial variations in the
data of adjacent grid points. Finally, information from different sources, such
as the ground sensors, can be stored in the same database as the RUC datain a
clear, concise way. A single SQL statement can then be used to different
views combining RUC these different sources of data.

Since the middle of June, RUC data has been stored for the grid point
closest to State College, PA in preparation for field tests. Figure 1 shows the
variations in height for the lowest two isobaric levels, 1000 and 975 mbars, for
the month of July and August of 1998. The lowest level at 1000 mbar can
vary from —50 m to 250 m. Local effects predominate as one approach the
surface so any value beneath 100m is probably suspect. Any height less than
50m should definitely be discarded. Figure 2 shows the diurnal variations in
temperature for three isobaric levels over the course of 4 days and figure 3
gives the corresponding variations in height. There is no correlation between
heating and cooling of the isobaric layers and the height. Starting in mid-
August the surrounding 4 grid points have been saved for 5 locations around
the United States. The largest variation in temperature observed between
surrounding grid points has been less than 3 Celsius. The variation in height
has been between 35 to 40 m. This is still acceptable for sound propagation
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measurements. Figures 4 and 5 give the temperature profiles, for August 30,
1998 at 5:00 AM and 3:00 PM EDT, respectively.

RUC modeled weather data is a promising way to integrate upper
atmospheric data with ground sensor data. The next step is to collect ground
sensor data and interpolate intermediate values using surface similarity theory.
This data can then be used to calculate the detection footprint using Parabolic
Equation code.

References

1 Stanley G. Benjamin, John M. Brown, Kevin J. Brundage, Barry E. Schwartz, Tatiana G.
Smirnova, and Tracy L. Smith, RUC-2 Technical Procedures Bulletin — draft, 1998
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Summary: A review of the meteorological and acoustic sensors available at the
Rock Springs site is first made, followed by analyzed Rock Springs data from 1995
and 1996. Results for scattering of the acoustic intensity and fluctuations in the
acoustic phase, both in the presence of atmospheric turbulence, are presented.

I. DESCRIPTION OF ROCK SPRINGS

The Rock Springs micrometeorological field site is located on flat farmland operated by
Penn State’s Larson Agricultural Research Center. The main test field is approximately half
a kilometer wide and extends along the valley roughly one kilometer. Home to the field site
are two permanent buildings and multiple meteorological and acoustic sensors.

A. Meteorological Sensors

A large variety of meteorological sensors are available for use at Rock Springs. Sonic
anemometers are available for turbulence measurements, providing high resolution (20 Hz)
sampling of surface-layer wind and temperature fields. Currently, seven ATI and two Gill
sonic anemometers are configured in a horizontal array, where the ATI sonics are on loan
from the U.S. Army Research Laboratory. Over the last year, this sonic array has been
used in a Large Eddy Simulation (LES) modeling effort! as well as for the acoustic studies
described in Sec. III
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Hourly-averaged temperature and wind data are available from a system maintained by
the U.S. Environmental Protection Agency. A mononstatic acoustic sounder (SODAR),
configure in a low-power mode, is in operation. In addition, a sensor suite comprising the
Automated Surface Observing System (ASOS) is being tested. The system provides data on
wind speed/direction, temperature, dewpoint, rainfall, visibility, cloud height, and lightning.
Plans are underway to allow access to the ASOS data through a Web page.

Other sensors are in place at Rock Springs that are not mentioned here. The interested
reader is referred to the second author for additional information.

B. Acoustic Sensors

Acoustic measurements at Rock Springs have become more and more sophisticated in
recent years. In 1995, the standard configuration consisted of 2 B&K microphones recorded
on a 2-channel DAT recorder. In 1996, 16 Sennheizer electret microphones were configured in
a three-dimensional orthogonal array and recorded on a 16-channel DAT recorder. Figure 1
depicts the three-dimensional array in a logarithmic microphone spacing. In 1997, the acous-
tics group lead by David Swanson configured 32 Sennheizer microphones in a vertical planar
array. Using a PC, the data were digitally sampled and stored real-time onto a hard-disk.

A picture of a portion of the Rock Springs site is given in Fig. 2. Visible from left to right
are the 32-element planar array (without microphones), the three-dimensional orthogonal
acoustic array, and the horizontal sonic anemometer array.

II. EXAMPLE: SCATTERING ANALYSIS

A. Review

Traditional scattering theory predicts that the signal intensity will have an exponential
probability density function (pdf).? It neglects the fact that atmospheric turbulence is inher-
ently inhomogeneous and intermittent. Periods of high activity are embedded in periods of
relative calm. By considering intermittency, Wilson et al. successfully predicted the pdfs of
fully-saturated, scattered signals measured within an acoustic shadow zone.? The relation for
the intensity pdf has one free parameter, the intermittency parameter o, which characterized
the strength of the intermittent effects. Figure 3 gives the intensity pdf for various values
of 0. The local spatial and temporal changes in sound speed associated with intermittency
increase the likelihood of measuring large values of scattered acoustic intensity.

B. Approach

Rice studied the statistics of a stable signal in the presence of noise and developed what
is now called the Rice-Nagakami pdf.? Following the same approach as Wilson et al., but
applying the Rice-Nagakami distribution instead of the Rayleigh distribution for the pressure,
an intensity pdf has been derived for the case of incomplete saturation. The final expression
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for intensity probability takes the form

o L[] (_I-l:fu)lo(\/IT">QXP(_(log(I-O/(I)—Iu)+02/2)2) i

V2mo Jo .j_oexp Iy jo/z 202 Io,

where I, = (I)(1 — S). The two model parameters are the intermittency parameter, ¢, and
the saturation parameter, S. The saturation parameter ranges from 0 to 1 and characterizes
the degree of saturation.

C. Experiment and Comparison

A field test was conducted at Rock Springs in 1995 over flat, hard ground at a range
of 283 m, and at frequencies from 90 to 500 Hz. The meteorological conditions were sunny
with a mean wind along the propagation path of 1.8 m/s. Downwind propagation data
were collected over a 50 min period and normalized intensity distributions were calculated.
The second and third intensity moments were used to find the intermittency and saturation
parameters. The results are summarized in Table 1. Based upon o, there is no intermittency

Table 1: Normalized intensity moments and theoretical parameters for field data.

Frequency (Hz) Moments Intermittency Parameter Saturation Parameter

2nd 3rd o S
90 0.10 0.0083 0.00 0.05
200 0.20 0.058 0.00 0.10
350 0.66 1.6 0.73 0.31
500 2.00 16 0.78 0.79

at 90 and 200 Hz, and significant intermittency at 350 and 500 Hz. Based upon S, the
saturation increases with frequency, from almost unsaturated propagation at 90 Hz to nearly
fully saturated propagation at 500 Hz.

The comparisons between the calculated and predicted intensity pdfs are shown in Fig. 4,
where the intensity is normalized so that the mean is two. The agreement is excellent. The
main features of the pdfs are the peak position and the tail magnitude. The peak position
approached zero for nearly full saturation (S = 1), and approaches the mean for nearly
no saturation (S = 0). The tail magnitude changes in response to the intermittency: the
stronger the intermittency, the greater the probability of higher intensities.
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III. EXAMPLE: PHASE FLUCTUATIONS

A. Review

Phase fluctuations and their relation to turbulence have been considered by others. In
particular, Nobel et al. developed a model for phase fluctuations by simulating eddies using
an elongated longitudinal vortex pair,’ and Wilson and Thomson developed an acoustic
propagation model for signal variability that included the effects of large-scale, anisotropic
turbulence.® Both models were compared to field data, and a common conclusion was that
the phase fluctuations were most influenced by large-scale atmospheric turbulence.

B. Approach

A field test was conducted at Rock Springs in 1996 over flat, hard ground during cloudy,
windy conditions. A plane view of the setup is given in Fig. 5. The mean velocity was 6.4 m/s
and the bearing offset between the wind and propagation direction was 12.3°. The receiver
consisted of a three-dimensional microphone array mounted on a 6 m tower. Sources were
positioned approximately upwind and downwind of the receiver at a distance D of 196 m.
The source heights were 1 m, and they were configured to radiate continuous tones at eight
discrete frequencies from 50 to 540 m. Concurrent with the acoustic measurements, wind
data were recorded from a horizontal array of nine sonic anemometers positioned a distance
|Y| from the receiver ranging from 2 to 26 m.

The time delay of the incident acoustic wave as it passes from one microphone to another
was calculated from the cross-correlation functions of the received acoustic magnitudes.
From the time delays and the known microphone positions, angles of arrival were then
estimated using a plane-wave assumption. The resulting angle-of-arrival estimates are shown
in Figures 6 and 7.

Rays were traced through mean wind and temperature profiles derived from Monin-
Obukhov similarity theory and mean meteorological measurements. Direct and ground-
reflected eigenrays were found for downwind propagation. The predicted arrival angles agree
well with the measurements at the higher frequencies (see Fig. 6). No eigenrays were found
for upwind propagation, although the measurements suggest the presence of a direct, upward
refracting ray.

Power spectral density estimates were computed over a 20 min test period using Welch’s
averaged periodogram method with a 2!®* FFT, Hamming window, and 50% overlap. An
example of the power spectral density for low winds is shown in Fig. 8. The dB scale in
these plots is relative, where 0 dB roughly corresponds to the noise level at high frequencies
and low winds. All source peaks are visible for low winds. However, for high winds, the
overall difference between the peak and noise levels decreases, and the noise overcomes the
peaks below 100 Hz. .

The magnitude and phase fluctuations were recovered at the source frequencies by ap-
plying the Hilbert transform. The travel-time fluctuations were computed from the phase
fluctuations by dividing out the source frequency. The results are given in Fig. 9. The
travel-time fluctuations are observed to be highly correlated across the frequencies and have
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time scales associated with large-scale atmospheric turbulence.

C. Theory and Comparison

From the turbulence data measured by the sonic anemometers, it was determined that the
travel-time fluctuations were dominated by the velocity fluctuations along the propagation
path. The maximum cross-correlation coefficient between these two signals was 0.7, as shown
in Fig. 10.

In collaboration with Leif Kristensen and Jakob Mann of Risg National Laboratory,
Denmark, travel-time fluctuations were predicted along the direct source-receiver ray by
characterizing the velocity with an adaptation of the two-dimensional horizontal energy
spectrum of Peltier et al.” Predicted and measured correlations functions are found to agree
well (see Fig. 10).

The variation in the point of maximum correlation was also characterized as a function
of both sensor separation and wind direction. The interested reader is referred to Ref. 8 for
more details on the 1996 experiment.
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Figure 2: View at Rock Springs showing acoustic and sonic anemometer arrays.
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ON THE APPLICATION OF TURBULENCE SPECTRAL/CORRELATION
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ABSTRACT

Calculations are made of the acoustical strength and diffraction parameters, and the mutual coher-
ence function (MCF), using several models for atmospheric turbulence spectra and correlations. Among
the models discussed are the basic isotropic Kolmogorov, Gaussian, and von Kérmén models. Parameter
selections for both shear and buoyantly generated turbulence are suggested. A new set of equations, which
predict the turbulence length scales and the strength and diffraction parameters as a function of z/Lm, and
2/ Lmo (Where z is the height from the ground, z; the boundary-layer inversion height, and Ly, the Monin-
Obukhov length), are derived for the Kolmogorov and von Kérmén models. More sophisticated turbulence
models are also discussed, incorporating anisotropy and inhomogeneity characteristic of atmospheric tur-
bulence. These include Kristensen et al.’s spectral tensor, Mann’s rapid-distortion model, and an equation
for blocking of turbulent motions by the ground. The strength parameter and MCF are found to have very
significant anisotropic behavior. The diffraction parameter, being based on a small-argument expansion of
the correlation function, behaves isotropically. Ground blocking is found to have no effect on horizontal
propagation.

1 INTRODUCTION

Many recent studies (Juvé et al., 1994; Ostashev, 1994; Wilson and Thomson, 1994; Boulanger et al.,
1995; Stinson and Daigle, 1996; Ostashev et al., 1996; Gilbert et al., 1996) have discussed the importance
of accurate representation of the turbulence spectrum in acoustical scattering calculations. Significant
unresolved issues remain regarding selection of an appropriate spectral model, and appropriate values for
model parameters. Several of the available models are described and compared in this paper, including
the isotropic Gaussian, Kolmogorov, and von Kdrmén models, the anisotropic spectral tensor suggested by
Kristensen et al. (1982), Mann’s (1994) rapid-distortion theory, and a method for incorporating “blocking”
of eddy motions by the ground. This paper emphasizes determination of model parameters, for both shear
and buoyantly generated turbulence, as well as the characteristics of the different models when applied to
scattering calculations. Only turbulent wind velocity spectra are considered, since the effect of velocity
fluctuations is usually more important than temperature fluctuations, even when buoyant convection is the
dominant mechanism for turbulence production (Wilson, 1996).

2 STATISTICS OF WAVES PROPAGATED THROUGH TURBULENCE

For simplicity, the emphasis of this paper is on line-of-sight propagation. Strength and diffraction
parameters are used to characterize the propagation in response to turbulent fluctuations. The parameters
quantify the propagation regime (i.e., weak/full saturation, and weak/strong scattering), and, once the
regime has been deduced, can be used to calculate the amplitude and phase variances (Flatté et al,, 1979).
The paper also discusses the transverse mutual coherence function (MCF), which describes the coherence
between a pair of sensors as a function of their separation normal to the direction of propagation.

The strength parameter & is simply the rms phase fluctuation calculated with geometrical acoustics.
Assuming that the length X of the propagation path is much longer than the integral length scale £ parallel
to the direction of propagation, the strength parameter is given by the equation (Flatté et al., 1979)

& =262k X L, (1)
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where*
1 [~
L== | Rf(re)dr, (2)
o Jo

7 is the variance and R () the correlation function of the effective index-of-refraction fluctuations, and e
is the unit vector in the direction of propagation. For calculation of the effects of wind velocity fluctuations
on a forward-propagating acoustic wave, the correlation function in (2) is the autocorrelation of the velocity
fluctuation component v parallel to the direction of propagation, normalized by a reference sound speed
co. [Only the along-path fluctuations are retained in the parabolic approximation to the wave equation
(Ostashev, 1994); many of the results reviewed in this section were originally derived using the parabolic
approximation.] I use overbars in this paper to indicate statistics of v/cp; absence of an overbar implies
statistics of v. Many of the equations, such as (2), are actually valid for either v/cg or v.

The diffraction parameter is proportional to the path-averaged ratio of the Fresnel zone radius to the
correlation length L, the latter being defined by an expansion of the correlation function for small arguments
perpendicular to the propagation direction (Flatté et al., 1979):!

R(rey) = o® (1 - |%|”'1) , 3)

in which e, is the unit vector perpendicular to the propagation, and p = 5/3 for turbulence. The diffraction
parameter is given by the equation? (Flatté et al., 1979)

X
The MCF is given by (Dashen, 1979; Ostashev et al., 1997; Wilson, 1998c)
T (ry) = exp {—27 Xk [b) (0) — by (ro)] }, (8)

where X is the propagation distance (range), ko = 27 f/co the acoustic wavenumber, f the frequency, and
by (ry) the two-dimensional (2D) correlation function of the velocity fluctuations parallel to the direction
of propagation. The 2D correlation equals a line integral of the usual 3D correlation function:

b" (r‘L) = %/_mR(r_L+ue") du. (6)
It is convenient to define a 2D structure function as
dy(rs) =2 [by (0) - by (ru)].- (7)

The 2D structure function has a simple relationship to the phase structure function D often encountered
in scattering theory:

D¢ (rJ_) = 277/6%}{2" (r_,_) . (8)

We see now that the main quantities of interest to be derived from the turbulence model (so that we
can determine the strength and diffraction parameters, and the MCF) are the integral length scale £, the
correlation length L, and the 2D structure function.

3 SHEAR AND BUOYANTLY GENERATED TURBULENCE

In this section, I review some basic features of turbulence in the atmosphere, for the purpose of devel-
oping a basis for choosing parameters in the turbulence models.

*Some authors, including Flatté et al., define the integral length scale by integrating the correlation function from —co to
0o. The single-sided definition used in (2) is more customary in the turbulence literature.

tIn Flatté et al.’s (1979) book, a distinction is made between horizontal and vertical correlation lengths. In turbulence,
however, the correlation length is independent of direction for small separations. This is the local isotropy property of turbulence
discussed by Tatarskii (1971).

$This equation for the diffraction parameter holds so long as the Fresnel radius is small enough that the expansion of the
correlation function (3) is valid; for turbulence r must lie within the inertial subrange (r < L).
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3.1 Production and Dissipation

The two main production mechanisms for turbulence in the atmospheric boundary layer are shear and
buoyancy. The rate of shear production of specific (per unit mass) turbulent kinetic energy (TKE) is u3/xz,
where u. is the friction velocity, £ ~ 0.40 is von Kdrmén's constant, and z is height (Wyngaard, 1992).
The rate of buoyant (convective) production is (g/6) (w'6"), where g is gravitational acceleration, ¢’ the
fluctuation in potential temperature, and w’ the vertical velocity fluctuation (Wyngaard, 1992). In clear
daytime conditions, buoyant production typically dominates in the bulk of the boundary layer, although
shear production dominates near the ground.

The level of the spectrum in the inertial subrange is determined by the TKE dissipation rate. For the
1D spectrum of the along-wind fluctuations, the inertial-subrange spectrum is (Kaimal et al., 1972)

F(k)= %3/31:-5/3, 9)

where « is a constant, whose value is approximately 0.52 (Hdgstrdm, 1996). A reasonable assumption for
shear turbulence is that the average rate of TKE production is locally balanced by dissipation. This would
imply a TKE dissipation rate of ¢ = u3/kz at altitudes dominated by shear production, hence determining
the inertial subrange spectrum.

Since the temperature flux (w'6') decreases linearly with height in a convective boundary layer, the
average dissipation rate of turbulence in the boundary layer must be proportional to w3/z;, where w, =
(9Qsz: /03)1/ 3 is the mixed-layer velocity scale, z; is the inversion height, Q, = (v’ 0’)3 is the surface
temperature flux (equal to the surface heat flux divided by pCp), and 6, is the surface temperature. Data
analyzed by Caughey and Palmer (1979) suggest that ¢ = 0.8w3/z; in the mixed layer, but increases
somewhat near the ground due to surface interactions.

3.2 Variances

Under conditions where shear production of turbulence dominates, the variances for the turbulent
velocities are anisotropic. Based on spectral measurements by Kaimal et al. (1972), Kristensen et al. (1989)
determine the variances

02 = 4.77u2, 03 = 2.6842, and 03 = 1.46u2, (10)

where the subscript 1 indicates the along-wind direction, 2 the (horizontal) crosswind direction, and 3 the
vertical. For an isotropic model, it is reasonable to set the variance equal to the average of the variances of
the three velocity components. Hence, for shear turbulence, we have from (10)

0% =297u?. (11)

Under conditions where buoyant production of turbulence dominates the entire boundary layer, the
velocity variances of the two horizontal components are equal, but the vertical velocity variance increases
with height. More will be said regarding this behavior in Section 5.4. For now it is enough to state that far
from the influence of the ground (typically 100 m or higher), the variance of all three velocity components
is (Caughey & Palmer, 1979)

o2 ~ 0.35w?2. (12)

3.8 Hpgjstrup’s Hypothesis

When both shear and buoyancy production play significant roles in driving atmospheric turbulence
(a common situation in the daytime boundary layer), a useful modeling assumption is that individual
spectra representing the shear and buoyantly produced turbulence can simply be added together. This idea
apparently originated with Hgjstrup (1982), who had good success applying it to 1D turbulence spectra.
Peltier et al. (1996) subsequently applied the Hgjstrup’s hypothesis to 2D TKE spectra. Here I assume [as
was done previously by Wilson and Thomson (1994)] that the hypothesis is fully general, being valid for
3D correlations and spectra.
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By setting the argument of the correlation function to zero, it follows that the variances are also
additive. For example, the total variance from (11) and (12) is

2 2/3 2 \"2/3
o2 = 2.97u2 + 0.35w?2 = u2 297+035( ) = w? 2.97(— = ) +0.35(,
KLmo KLmo (13)

where Lo = ~T,u3/kgQ, is the Monin-Obukhov length. [Note that —z;/kLm, = (wa/u.)3.)

By integrating the correlation function with respect to the propagation direction, it can be shown that
the strength parameters and 2D structure functions are also additive. Integral length scales are variance-
weighted sums:

0%L = L40% + Lok, (14)
where 02 = 02 + 0%, and the subscript s is the shear contribution, and b the buoyancy contribution. As can
be shown from (3), the correlation lengths combine in reciprocal fashion:

o? o2 0',2,
Tr-1 = 7p-1 T Tp-1
T IF

(15)

4 ISOTROPIC TURBULENCE MODELS

The term “isotropic turbulence” is actually an incongruous one, since turbulence by nature possesses
an anisotropic energy subrange. Still, isotropy can often be a useful modeling assumption for several
reasons. First, the energy subrange is nonuniversal and difficult to model. Therefore some simplifications
are expedient and reasonable. Second, even when a model incorporating an anisotropic energy subrange is
available, analytical derivation of scattering statistics such as the strength parameter is often impossible,
and without such analytical results there may be little insight into the propagation physics. Finally, if
the scattering comes primarily from the isotropic portion of the spectrum (the inertial and dissipation
subranges), there is no motivation for accurately modeling the anisotropic portion of the spectrum.

4.1 General Relationships

A little background on correlations and spectra in isotropic, incompressible vector fields will be helpful
in deriving equations for the turbulence models. As discussed by Batchelor (1953), the full autocorrelation
function for an isotropic vector field is given by

r2 r
R(r)= —'2’R,, r) + —%R_._ ), (16)

wherer = rje +rie., Rj(r)=R (re") is the correlation function for displacements parallel to the velocity
fluctuations, and R, (r) = R(rey) is the correlation for perpendicular displacements. If the flow field is
incompressible,

Ry(r) = Ry(r) + g —= Ra'l' 0,

The integral length scale £, needed for the strength parameter, is found by integrating R (r), and is
independent of the direction of propagation for isotropic turbulence.

The 2D correlation function can be determined from the specific TKE spectrum E (k) using the equation
(Wilson, 1998c)

a7

~E (kJ') ——=Jo(k17y1) dky, (18)

by (rL) = 2
where Jp is the cylindrical Bessel function. Note that in isotropic turbulence, the 2D correlation function is
independent of the direction of propagation, and depends only on the magnitude of r; . The same statements
apply to the MCF. Another relation for isotropic turbulence that we will find useful is (Batchelor, 1953)

_ed [1 dF (K)

E(k) = (19)

dk [k dk |’
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where F (k), the 1D spectrum, is the Fourier transform of R (). The 3D cross spectrum between fluctua-
tions of the ith and jth velocity components is given by the equation (Batchelor, 1953)

E(k)
®;i(k) = T (6,-,-1:2 — kik;) . (20)
4.2 Kolmogorov Model
Kolmogorov’s hypotheses (1941) imply that the structure function, defined by the equation Dy (r) =

([u (reg) —u (0)]2>, is proportional to r%/3. Specifically, we write

Dy (r) = CHr2P3, (21)

where CZ is called the structure-function parameter. This relationship is valid in the inertial subrange.
From (3) and (17) we find that the parallel correlation function has the small-argument expansion

3rp1

-2 I P

Ri(r)=o (1 4|L| ) (22)

Since the definition of Dy (r) implies that Dy (r) = 2[Ry (0) — Ry (r)], we must have p = 5/3 in the

correlation expansion with*
302 3/2
=|— . 2
2= (x7) )

Hence the correlation length and diffraction parameter can be determined from the variance and C%. Values
for the variance were given earlier, in Sec. 3.2.

Let us now consider the relationship between C} and the dissipation rate. Using the Fourier transform
relationship between the correlation and spectral functions, it can be shown that

{o -]
Dy(r)=4 / (1 = cos kr) F (k) dk. (24)
0
Note that wavenumbers such that kr < 1 do not contribute to the integral, because of the filtering action

of the (1 — cos kr) factor. Hence for small r, we may use (9) for the spectrum. The integration can then be
performed, resulting in

Dy(r)=ir (%) /3213, (25)
Comparing now with (21), we seef
C? = g[‘ (%) ae?3 ~ 2,123, (26)
Hence, from (23),
L= 0.61‘-’:-. (27)

Assuming the validity of Hgjstrup’s hypothesis, one can find the overall C3 by adding together the contri-
butions from shear and buoyancy turbulence. The result is

2 2
2 ~ U, w,
C2~21 (1.8—22 5+ /3) : (28)

*A similar equation appears in Tatarskii's (1971) book, except that a factor 2 replaces the 3/2, and C? replaces CZ. The
coefficient changes because the index-of-refraction field is scalar, whereas the velocity is vector. Ostashev (1994) has previously
found similar modifications to scalar equations when they are adapted to vector fields.

This relationship is analogous to one derived for the temperature structure-function parameter by Wyngaard, Izumi, and
Collins (1971).
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Figure 1: Normalized correlation length scale L as a function of —z/Lmo and —2;/Lme, where z is height from the
ground, z; is the boundary-layer inversion height, and Lmo is the Monin-Obukhov length. The upper left corner
shows L/z, and the lower right corner shows L/z;.

Using this result for C? and o2 from (13), and substituting into (23), we have
3/2
L=

—z 2/37%/* —2z 3
L [1+0.02 (—zi/kLmo) ] = 0195 | L+ 88 (=2i/KLmo) (29)

1+ 0.56 (—2z/KLmo)*? ' [ 1+ 1.8(—2/KLpmo) 23

When the boundary layer is dominated by shear (—z;/ Ly, < 1) and the propagation height is within the
shear layer (—z/Lmo < 1), we have the simple result L = L, > 1.3z. At the other extreme, when the
boundary layer is dominated by buoyancy (—z;/Lmo > 1) and the propagation height is above the shear
layer (—2/Lmo > 1), we have L = L; =~ 0.12z;. The full behavior of L/z and L/z; is shown in Fig. 1.
Figure 22 shows calculations of the diffraction parameter A, multiplied by the dimensionless groups kp2%/X
and ko2f/X.

Calculation of the strength parameter for the Kolmogorov model is more problematic. Eq. (22) is
valid only for small /L, and the integral length scale is nonconvergent when we attempt to use this
small-argument expansion. In the turbulence literature (e.g., Tennekes and Lumley, 1972), the length scale
{ = 03 /e is often used to represent the large eddies, and assumed to be close in value to the integral length
scale. From (27), we therefore have £ ~ ! ~ 1.6L. Alternatively, we could simplemindedly assume that
Ry (r) is given by (22) for r < (4/3)*/2 L, and zero otherwise. One then finds £ = (2/5) (4/3)*/ L ~ 0.62L.
The corresponding result for scalars appears as (6.2.6) in Flatté et al. (1979). However, we have no assurance
that either of these approximations for £ are, in general, good ones. In the following section, discussing the
von Kérmén model, we will see in fact that both appraximations are generally poor.

The 2D structure function (and hence the MCF) can be determined by first substituting (9) into (19),"
with the resulting energy spectrum

E() = 5{"—8“3/%-5/3. (30)
From (7) and (18), we have

dy (ry) = /0 = 5%-*—) (1= Jo (kurs)] dku. (31)

*Equation (19) only applies to isotropic turbulence. Even though large-scale turbulence is always anisotropic, it is reasonable
to apply (19) to the smaller, inertial scales. (See, for example, Tennekes and Lumley (1972}, p. 253.)
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Figure 2: Upper left is the diffraction parameter A muitiplied by koz2/X; lower right is Akoz?/X.

The factor (1 — Jo (k7. )] filters out the effects of low-wavenumber turbulence on dj; (), provided that r
is within the inertial subrange. Hence (30) may be used in the integration. Making this substitution, and
replacing the Bessel function with its integral representation, leads to

dy (1) = 22213 [T [7 11 _ cos (krsin 6)] k-5/3d8 dk
“(r)_181r L [1 — cos(krsin )] .

Using the trigonometric identity 1 — cos z = 2sin? z, changing the order of integration, and then calculating
the integrals using (3.823) and (3.621.1) in Gradshteyn and Ryzhik (1994), we have the result

_1/3r@/3) (1 4 3,53 _ _1T(Q1/6) 5 53 5/3
d" (T) = W—B (5, 3) 062/ r /3 = WC‘/T / = 0.850%;7‘ / . (32)
where B(a,b) = I'(a)T (b) /T (a + b) is the beta function. The second form follows from (26), and by
performing further manipulations on the gamma functions. I derived this version of the 2D structure
function previously (Wilson, 1998¢c) by taking the inertial-subrange limit of the von Kérmén model. Here
I have rederived the equation without making any assumptions regarding the energy-subrange structure of
the turbulence.

4.8 Von Kdrmén Model
The von Kdrmén model is developed from the following equation for the specific energy spectrum:
55 A

E(k) =355 W21/ (1 ey (33)

where o2 is the variance parameter (the variance of a single velocity component), and ¢ is a length scale
parameter.” The corresponding correlation function for separations parallel to the direction of the velocity
components is (Wilson, 1998¢)

R 0) = o (3) Ko (3) - (34)

*Some previous authors (particularly those concerned with optical propagation) incorporate a spectral roll-off at high
wavenumber, representing the dissipation subrange, in the von Kdrmén model. However, since the dissipation subrange has
little effect on audible frequency sound waves, it is neglected here. This simplification allows us to analytically derive equations
for the correlation and structure functions.
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Figure 3: Normalized integral length scale £ (parallel to the velocity fluctuations) as a function of —z/Lm, and
—2i{Lmo. Upper left is £/z, lower right is £/z;.

The 1D longitudinal spectrum (the Fourier transform of the above correlation function) is

1 a2l
FO= 50 v rey (%)

A reasonable method for determining the parameters in the von Kdrmén model is to set the variance
equal to the actual variance of the field, and then choose the length scale to match the Kolmogorov model

in the inertial subrange. By taking the limit of (35) for large k¢, and setting the result equal to the right
side of (9), one finds

2 32 g3 o3
Applying this equation to shear and buoyancy turbulence yields ¢ = 1.8z and £ = 0.18z;, respectively.
Since the von Kdrmén and Kolmogorov models have the same inertial subrange, L and the diffraction

parameter are the same for both models. Calculation of the strength parameter requires the integral length
scale. A relationship between the integral length scale and £ can be found by integrating (34):

T 065
B(1/2,1/3) €
In the previous section it was argued, on the basis of the Kolmogorov model, that £ =~ 1.6L. Comparison
of equations (27) and (37) implies that £ = 1.07L for the von Kdrmén model, a value reasonably close
to the Kolmogorov estimate. The resulting values for shear and buoyancy turbulence are £; = 1.3z and
Ly = 0.132;, respectively. According to (14), the general equation for £ involves weighting the length scales

for each type of turbulence by the respective variances. The result can be written

£~ 1.3, 170012 (2/2) (=zi/Lmo)""° _ 0.13z, L 8 (/=) (==/ KLmo) %
1+ 0.12 (—zi/kLmo)?/® 1+ 8.5(—2i/KkLmo)~2/3
Contour plots of £/z and L£/2; are shown in Fig. 3. Calculations of the strength parameter @, multiplied

by the dimensionless groups co/ (kou.\/X z) and cp/ (kow.\/X 2;) (the shear and convective turbulence
normalizations, respectively), are shown in Fig. 4.

c (37)

(38)



304
-2

mo

o '{/0% : o
e -
2 e

.01 <
00100 10 1 0.1 0.01

oo

Figure 4: Upper left is the strength parameter $ normalized by co/ (kou.vXz); lower right is ®co/ (kow.v/Xz).

Comparing Figs. 1 and 3, we observe no simple proportionality between £ and L over most of the
range of —z/L,, and —2;/L,,,, as we might have anticipated. On the contrary, there are very significant
qualitative differences between £ and L: near the ground, £ usually is determined by the large, buoyancy
driven eddies, whereas L is determined by smaller, shear-driven eddies. This holds true even for boundary
layers with moderate surface heat fluxes. From a modeling standpoint, the different behaviors of £ and
L result from using Hgjstrup’s hypothesis. Physically, we can view the distinctive behavior of £ and L
as resulting from the broad spectrum of spatial scales, spanning z to z;, at which TKE is produced in
the atmospheric boundary layer. £ and L are both “outer” scales in the sense that they characterize the
energy-containing subrange; however, they respond to different parts of the production spectrum.

4.4 Gaussian Model
The Gaussian model is defined by the longitudinal correlation function

2
R” (T) = ozexp (—F) . (39)
(e
Fourier transformation yields the spectrum

2 202

Because it does not realistically describe the inertial subrange, the Gaussian model is best suited to the
energy-containing subrange. However, it has also been used successfully as an “applied filter” when scat-
tering occurs from only a limited part of the turbulence spectrum (Wilson et al., 1998).

Selection of the Gaussian length scale parameter for scattering calculations is problematic (Wilson et al.,
1998). If the Gaussian correlation function is expanded for small argument, and the result set equal to (3)
with p = 3, then £ simply equals the correlation length L. In this case £ is also equal to a quantity known
as the Taylor microscale, which falls within the inertial subrange (Wilson et al., 1998). In high Reynolds
number turbulence, such as occurs in the atmospheric boundary layer, the Taylor microscale is much less
than the integral length scale. Therefore choosing {c on the basis of the small-argument expansion leads to
a very poor model for the large-eddy region of the turbulence spectrum.

A better procedure in most cases is to choose £z on the basis of the integral length scale of the
turbulence. The integral length scale for the isotropic Gaussian model is (v/7/2) £c. If the values of £ in
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the von Kérmdn and Gaussian models are equated, one has the relationship

_ 20'(5/6) il
=T/ L= 0nT (41)

This result implies £z = 1.5z for shear turbulence, and ¢ = 0.152; for buoyancy turbulence. These values
are somewhat different from those suggested previously by Wilson and Thomson (1994), which were 1.0z
and 0.4z;, respectively.

The Gaussian model has some utility in theoretical models of sound propagation through random
media: it allows many results to be obtained in simple, analytical form, and makes clear the characteristics
of the scattered signal statistics for wavelengths smaller than or larger than a single characteristic length
scale for a random medium. However, because the Gaussian model is a very poor overall description of
the spectrum of atmospheric turbulence, one cannot expect satisfactory results from it for a broad range of
acoustic frequencies and atmospheric conditions.

4.5 G-Function Model

In Section 4.3, the length scale ¢ for the von Kérman model was chosen to obtain the proper spectral
level within the inertial subrange. An unfortunate consequence of choosing £ in this manner is that the
resulting spectral model may not agree well with the measured energy-subrange spectrum. As a result,
the modeled integral length scale may not agree with the actual integral length scale. To overcome this
difficulty, I have proposed (Wilson, 1998b) a generalized version of the von Kdrmén model, which allows
the integral length scale to be specified independently. The energy spectrum is given by the equation

4(0/6+b)(11/6+b) 2 2 ,0\—5/6 lz
Ek) ==3pamipzn ° (WE) " Banjaune | Fb), (42)
where B; (a,b) is the incomplete beta function. Equivalently, the energy spectrum can be written
402t 2,2| 1/6, 1/6 —b
E(k) = 3mra7srh OF (” &l o, ls/6 ) ’ (43)

where G () is the Meijer’s G-function (e.g., Erdélyi et al. 1953). When b = 1, (43) reduces to the von
Kédrmdn model. It can be shown (Wilson, 1998b) that the integral length scale corresponding to (43) is
27
L= 5B(1/2,1/3 +b) & (44)
Values b < 1 result in integral length scales larger than the von Kérmén model, and b > 1 results in smaller
integral length scales. The 2D correlation function can also be determined analytically, with result

b = 3T as Y 3fr(1/3+b) [630( tlnl/:/s b+5/6 )‘G?g (4%| 1,1/5?/6, b+5/6 )] (45)

The G-functions in (45) can be computed using the commercial software package Mathematica. Figure 5
shows the 2D structure function for several ratios of the integral length scale to the von Kdrmén length
scale. Although the appearance of the curves suggests that the inertial subrange asymptote in the G-function
model depends on the integral length scale, in actuality the curves do converge very slowly as r/£ — 0. For
large separations, increasing the integral length scale leads to larger values of the structure function.

5 ANISOTROPIC TURBULENCE MODELS

The main motivation for anisotropic modeling of turbulence is to improve realism within the energy-
containing subrange. Because the turbulent production mechanisms (shear and buoyancy) act along pre-
ferred directions, energy-containing subrange turbulence is inherently anisotropic. Unfortunately modeling
of the energy-containing subrange is a difficult topic, since (unlike the inertial subrange) no universal para-
meterizations are known.
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Figure 5: Two-dimensional structure function for the G-function model, for several values of the ratio L/Lyx, where
L is the integral length scale in the G-function model, and L,k is the von Kdrmén length scale.

5.1 Nonrigorous Gaussian Model
A simple anisotropic model can be constructed that uses a distinct length scale in each direction:

2 2 2
R(TI,T2,1'3) =02exp (_;2_1 _% - %g') .

The model developed by Wilson and Thomson (1994) is based on sums of correlation functions having this
form.” A useful feature of the nonrigorous anisotropic Gaussian model is that the length scales can be
selected to equal the actual integral length scale £ in each direction. This results in good predictions for
the strength parameter, and hence for the rms phase fluctuations. It also provides good predictions for the
MCF when the separation between the sensors is somewhat larger than £, since in this case d () > 2b(0) =
82/ (7k2X) = (2/7) L.

Like the isotropic Gaussian model, determination of the length scales for the nonrigorous anisotropic
Gaussian model can be problemmatic. If separate length scales are used for each velocity component, a
total of nine length scale parameters are required. Wilson and Thomson (1994) devised a scheme based
on directional dimensional analysis (DDA) to predict the length scales from z and z;, but DDA is not
well tested at present and likely provides only a rough, qualitative description of atmospheric turbulence
structure.

The main disadvantage of the nonrigorous anisotropic Gaussian model is that it does not accurately
describe the correlation function of the turbulence for small separations (r; < £). The model does not
necessarily obey local isotropy for small separations, and does not have a structure function consistent with
Kolmogorov’s scaling hypothesis. As a result predictions of the diffraction parameter, and of the MCF for
sensor separations in the inertial subrange, are inherently poor. An additional problem with the nonrigorous
anisotropic Gaussian model is that it does not satisfy incompressibility for arbitrary values of the length scale
parameters. More rigorous approaches to modeling the 3D spectra/correlations of atmospheric turbulence
are discussed in sections 5.2 to 5.4.

*There is an error in Eqs. (27) and (28) of Wilson and Thomson (1994): all occurrences of 1/x2 should be replaced by
, and likewise for 1/ n’ This mistake later resulted in an erroneous conclusion by Wilson (1998c), that the coherence was

enhanced by pxopagauon in the a.long-wmd direction. The correct prediction is that coherence is degraded in the along-wind
direction. Eq. (80) in Wilson (1998c) is correct, however.

x2
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Figure 6: Two-dimensional structure functions for various turbulence models, for along-wind propagation.

5.2 Models Based on Kristensen et al.’s Spectral Tensor

Kristensen et al. (1989) suggested partitioning the energy spectrum for anisotropic turbulence into
three independent scalar functions, A; (k), Az (k), and A3 (k), where E (k) = (4/3) 7k® }_; A (k). By their
hypothesis, the 3D spectral density tensor of the turbulent velocity fluctuations has the form

@y (k) = 23: Am (F) (6,,..- - '“"k—f) (&..,- = f-”,c,ﬁ) : (46)

m=1

It is beyond the scope of this paper to discuss the mathematical details and implementation of Kristensen
et al.’s spectral density tensor. Note that (46) does not provide a fully general description of anisotropic
turbulence. The tensor assumes certain symmetry properties that may be unrealistic. Application of the
tensor simply represents an initial (and practical) attempt at incorporating anisotropy into spectral models.

When Kristensen et al.’s spectral tensor is employed, it can be shown that the 2D correlation function
for propagation in the z;-direction is determined from the equation (Wilson, 1998a)

bua (ra,rs) = 21 fo Ay (k1) Jo (kury) ko dky, (47)

and similarly for the z2- and x3-directions. Note that as a result of Kristensen et al.’s hypothesis, by (rL)
depends only on the magnitude of r, as it did for isotropic turbulence. However, b (r.) does depend on
the orientation of the propagation path.

The isotropic Gaussian and von Kdrmén models can be reformulated in an anisotropic form with
Kristensen et al.’s spectral tensor (Wilson, 1998a). The procedure involves defining three independent
functions A;, each with its own variance and length scale. When the variances and length scales are equal,
the isotropic energy spectrum for the corresponding model is recovered. The resulting anisotropic models
are quite complicated, involving generalized hypergeometric functions for the Gaussian model, and Meijer’s
G-functions for the von Kdérm4n model. A generalized form of the von Kérmén model, devised by Kristensen
et al., can also be used to construct the A;'s. Two-dimensional structure functions based on the different
models are shown in Fig. 6 for along-wind propagation, and in Fig. 7 for crosswind propagation. The
structure functions predictions vary substantially from model to model; this implies, of course, that the
MCF predictions are also quite different.

Generally speaking, the complexity of rigorous models based on Kristensen et al.’s spectral tensor,
combined with their inherent (and perhaps unrealistic) symmetry properties, makes them unattractive at
present for wave propagation calculations. However, it might be possible to beneficially exploit certain
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2D structure function, dyg(r) / (z1,2)

normalized sensor separation, r/ z

Figure 7: Two-dimensional structure functions for various turbulence models, for crosswind propagation.

properties of Kristensen et al.’s spectral tensor, such as the simple relationship between the 2D structure
functions and the A;’s, Eq. (47).

5.8 Mann’s Rapid Distortion Theory Model

The Mann model (1994) is the result of a first-principle theoretical treatment of turbulence in a constant
shear layer. The main hypothesis upon which Mann’s model is based is called rapid distortion theory: In a
turbulent shear layer, new eddies are perpetually being created, subjected to the forces of shear, and then
eventually broken down into smaller eddies. Between the times when an eddy is created and when it is
destroyed by shear forces, there exists an interval for which the eddy exists in a state that is “typical” for
eddies having its same spatial dimensions. This interval is called the eddy lifetime.

A full discussion of rapid distortion theory and Mann’s model is beyond the scope of this paper.
However, the relevant equations are summarized here. Mann’s equations for the 3D autospectra in a
uniform (constant gradient) shear layer are

2 (k) = 210) T [ - 2 - ko + (8 + ) 2], (48)
B2 (k) = E(k") [2 — k2 — 2kokaoCy + (2 + k) €3] (49)

and
@33 (1) = 2 (k") K +43). (50)

In the equations above, E (ko) is the initial (before the onset of shear distortion) energy spectrum. The
isotropic von Kérmén energy spectrum (33) is used. The initial wavenumber is ko = (k1, k2, k3p), where
kso = k3 — Bky, and B is the nondimensional eddy lifetime, given by (Mann, 1994; Wilson, 1998a)

—1/2
B= \/_I‘ [Bll(l+k3(3) (%, g)] . (51)

where T is the eddy-lifetime parameter. The ¢; follow from the equations ¢, = C; — (kz/k;1) C2 and
¢2 = (k2/k;) C1 + C2, where

Ci= kz(k2+k) '
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Model, Direction a2 | L)z | ®co/ (kou.\/X z)
Mann model, along wind (i = 1) 477 | 1.49 3.77
Mann model, crosswind (i = 2) 2.56 | 0.212 1.04
Mann model, vertical (i = 3) 146 | 2.11 2.48
Isotropic von Kdrman, all directions | 2.97 | 1.34 2.82

Table 1: Normalized variances, integral length scales (velocity component parallel to the direction of integration),
and strength parameters for the Mann turbulence model. The isotropic von Kdrmén model is shown for comparison.

and

S [B8217) ®

TR | R PRk

A reasonable method for determining the parameter I' is to match the ratio 07/03 in the Mann model
to the anisotropic variances given earlier in (10). This ratio should be 4.77/1.46 = 3.27. The desired value of
T, found by numerical integration, is I' = 3.58 (Wilson, 1998a). To force o2 equal to 4.77u2 when I' = 3.58,
we then need to set (Wilson, 1998a)

o2 = 1.52u2 (54)

in the initial von Kdrmédn spectrum. One can obtain the length scale by matching the dissipation rate of
turbulent kinetic energy to u/xz, with result (Wilson, 1998a)

¢ =0.587z. (55)

The diffraction parameter for the Mann model is the same as the shear-turbulence Kolmogorov model,
since the dissipation rates in the two models are the same. Table 1 shows the variances, integral length
scales, and strength parameters corresponding to the Mann model.

The 2D correlations for the Mann model must be determined, in general, by numerical evaluation of a
2D inverse Fourier transform of the 3D spectra. Figs. 6 and 7 show 2D structure functions resulting from
such an evaluation, for along-wind and crosswind propagation, respectively.

5.4 Ground Blocking

In a previous paper (Wilson, 1997), I proposed an inhomogeneous, anisotropic spectral model for the
buoyancy driven (convective) boundary layer that includes the effect of blocking by the ground. Blocking
forces the vertical velocity variance to vanish at ground level. Continuity requires that the horizontal velocity
variance also be modified. The basis of the ground-blocked spectral model is an equation that gives the
observed turbulence spectrum in terms of an a priori homogeneous spectrum (i.e., the spectrum that would
exist if the ground were not present). Derivation of this blocking equation is based on previous suggestions
by Hunt and Graham (1978), with the assumptions of a no-slip lower boundary condition, and that the
blocking does not itself generate vorticity. These assumptions allow the boundary effect to be modeled by
potential flow theory. A straight forward derivation then leads to the equation

85 (kr, oy 2,2) = ¢57) (R, b |2' = 2]) (56)
+ e~ my (ky, ka) 650" (ka, Ko; 2)
+e~*r=ms (ky, ko) ¢g-!) (K1, k23 2")
+ e+ )me (kg ko) my Ry, ko) S5 Ry, ko 0)
where ¢,; (called the 2D cross spectrum) is the Fourier transform of the correlation function R;; (r1,72,2,2') =

(ui (z,y, 2) uj (z + 71,y + 12, 2')) with respect to the two horizontal separations r; and rs, the superscripted
“(H)" refers to the homogeneous spectrum, my = ik, /kn, mp = ika/kn, m3 = -1, and k? = k? +- k2. In the



310

paper (Wilson, 1997), I used the von Kérm4n spectrum with parameters chosen for the convective condi-
tions (02 = 0.35w? and € = 0.8w3/z;), although the blocking equation can be applied to other homogeneous
spectra.

The blocking equation predicts that the vertical velocity variance vanishes at the ground, and then
increases with height in proportion to 2%/3 (Wilson, 1997). The horizontal variances at ground level equal
3/2 times their values away from the ground. These predictions are consistent with previous observations of
convective boundary layers (Caughey & Palmer, 1979). Good agreement between predictions and measure-
ments for other second-order convective-boundary-layer statistics, such as vertical cross correlations and
horizontal spectra, is also obtained. One can construct a very satisfactory overall model for second-order
boundary-layer statistics by using Hgjstrup’s hypothesis, with Mann’s model for the contribution from shear
turbulence, and the ground-blocked model for the buoyancy turbulence.

Let us now consider the effect of ground blocking on horizontal acoustical propagation. The strength
parameter is determined by the product of the variance and the integral length scale parallel to the velocity
components. For horizontal propagation we can take the direction of propagation to be the z,-axis without
loss of generality. Hence

00
@2 = k(zlx/ Rll (rlv 01 z, Z) drly (57)
-0
Using the Fourier transform relationship between R;; and ¢,;, we can rewrite this equation as
o0
% = 27k2 X / b11 (0, k2, 2, z) dks. (58)
-—00

Since m, (0, k2) = 0, (56) implies that ¢y, (0, k2; 2,2) = ¢§¥) (0, k2;0). Therefore the ground blocking has
no effect on the strength parameter for horizontal propagation! A similar derivation, except with ro # 0
and z # 2/, demonstrates that the 2D correlation function is unaffected by blocking. Hence the MCF
is also unaffected. Finally, since blocking only affects the large eddies (compared to the height from the
ground), local isotropy is preserved, and the correlation length used to calculate the diffraction parameter
is unaffected by the blocking.

Considering the problem in Fourier space, the effect of the boundary is to cause the vertical velocity
to deflect in the horizontal direction parallel to the wavenumber vector of a given mode. As a result, the
velocity field near the ground essentially consists of the lower halves of roll-type vortices having randomized
orientations.” The 2D spectrum used to calculate the strength parameter or structure function involves only
the rolls having rotational axes parallel to the direction of propagation. Since these rolls have no velocity
component aligned with the propagation, they do not affect the propagation.

6 CONCLUDING REMARKS

According to the formulation given in this paper, there are two basic length scales characterizing large-
scale turbulence structure. One of these, the correlation length L, is associated with diffraction, and the
other, the integral length scale £, with geometric phase fluctuations (the “strength” of the turbulence). They
could both be called “outer” scales in the sense that they characterize turbulence in the energy-containing
subrange. However, L is determined by the total TKE dissipation rate, whereas £ is weighted toward the
largest eddies. In an unstable atmospheric surface layer, total TKE production is usually dominated by
shear-generated z-scale eddies, whereas the largest eddies are buoyantly generated and normally have sizes
on the order of 2;. Hence L is often much smaller than £. Physically, this discrepancy results from the fact
that TKE is produced in the atmospheric boundary layer at a broad range of spatial scales. One might
refer (tongue in cheek) to L as the “inner outer” scale, and to £ as the “outer outer” scale. However,
such terminology would inevitably lead to confusion, since in nearly neutral conditions it is possible for the
length scales to be nearly equal.

The strength parameter for acoustic wave propagation, being a function of the integral scale, is generally
determined by the large, buoyantly driven eddies. The diffraction parameter, since it depends on the

*Roll vortex structures are often observed in the atmospheric boundary layer, with preferred alignment roughly in the
direction of the mean wind. The “rolls” in the discussion here are not necessarily actual turbulence structures, but rather
figments of the Fourier decomposition. They have random orientations in horizontally isotropic turbulence.
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correlation length, is most affected by small, shear-driven eddies. This paper has provided some new
parameterizations for the length scales L and £, and for the strength and diffraction parameters, in terms
of the turbulence scales z, z;, u. (the friction velocity), and Q, (the surface heat flux). The mutual coherence
function (MCF) was also modeled in terms of these turbulence scales.

The necessity of defining two separate length scales was discussed previously by Wilson and Thomson
(1994). In that paper, the two length scales were referred to as the parallel length scale, L), and the
perpendicular length scale, L, . These two scales are analogous to £ and L, respectively, in this paper. The
main improvement in this paper is that equations for the two length scales were derived based on a von
K4rmén model, rather than a Gaussian model. The benefits of this approach are a more realistic turbulence
model, and more rigorous equations for the model parameters.

When modifications to the turbulent flow caused by ground blocking of eddies were incorporated into
the wave propagation calculations, the blocking was found to have no effect on the strength parameter
and MCF for horizontal propagation, even though significant modifications to the flow field occur. This
conclusion should not be construed as implying that the ground in general has no effect on acoustic wave
propagation through turbulence. The blocking effect is just one aspect of this complicated problem. Other
phenomena, such as flow modification by surface roughness and the role of ground-reflected acoustic waves
(Daigle et al., 1978), are important and require further study.
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reflected Waves 1{} a turbulent
atmosphere
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Las Cruces, NM 88003-8001

ABSTRACT

Predictions of interference of direct and ground reflected sound waves in a tur-
bulent atmosphere are important for many concerns of atmospheric acoustics.
The most advanced theory of this phenomenon has been developed by Clif-
ford and Lataitis [1]. They present the analytical equation for the mean-square
sound pressure {|p|?) due to a point source located above an impedance ground
in a turbulent atmosphere with temperature fluctuations, and calculate {|p|?)
for a Gaussian correlation function of these fluctuations. In the present paper,
we generalize these results. We consider the interference of direct and ground
reflected waves in a turbulent atmosphere with both temperature and wind
velocity fluctuations, and calculate {|p|2) for Gaussian, Kolmogorov and von
Karman spectra of these fluctuations. The temperature and wind velocity con-
tributions to the mean-square pressure (|p|?) are compared as well as the values
of {|p|?) for different spectra.

1 INTRODUCTION

The interference of the direct wave from the source S to the receiver R (both
located above the impedance ground) and that reflected from the ground is one
of the most important concerns in atmospheric acoustics, see Fig. 1. In most
cases of practical interest, the resulting sound field is dramatically affected by
atmospheric turbulence, which can result in increase of the mean-square sound
pressure by several dozen dB. The most recent theory of this phenomenon has
been developed by Clifford and Lataitis [1], who had generalized results of
previous researchers. According to their theory, the sound pressure p at the

receiver due to a point source is a sum the sound fields of the direct and ground
reflected waves:
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Figure 1: Geometry of the problem. § is the source located at the origin of the
coordinate system (x,y,z), and R is the receiver.

" hr +
p=exp(z ::+¢a)+QeXP(z :r+¢). (1)

Here, k is the sound wavenumber, 74 = ‘/L2 + (hs — hy)2and r, = \/L2 + (hs + hy)?

are the path length of the direct and ground reflected waves, h, and h, are the
source and receiver heights, L is the horizontal distance between source and
receiver, Q is the apparent strength of the image source, 13 = 1S3 + x4 are fluc-
tuations in the complex phase of the direct wave, and ¥, = iS5, + X, are those
in the reflected wave (S and x with the corresponding indexes are fluctuations
in the phase and log-amplitude of the direct and reflected waves). Clifford and
Lataitis used expressions for 4 and 4., presented by Tatarskii [2], which are
valid in the Rytov approximation. Strictly speaking, these expressions were
obtained and are valid only for the case of sound scattering by temperature
fluctuations. As has been shown in reference (3] and some other recent work,
a generalization of equations for statistical moments of a sound field in an at-
mosphere with temperature fluctuations to the case of both temperature and
wind velocity fluctuations is not trivial and has led to many mistakes in the
literature.
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Using the expressions for 1 and 1, and after lengthy manipulations, Clif-
ford and Lataitis came up with the final equation for the mean-square sound
pressure in homogeneous and isotropic turbulence

IQP + 210|IT Cos[k("'r —74) + 0] ) (2)

72 Tars

1
2 e
(1) = 75 +

Here, Q has been represented in the form Q = |Q|e®, and the factor T is given
by

T vz a0 - 2 M A
= ezp|—a ()-Ei—z;o (2)dz
1 f2he(-L1/L)
- 3
+2hs A A(z)dz]}, | (3)

where Ly = p=iy (see Fig. 1), & = 1/2if Lo < y/L/k where Ly is the scale of

random inhomogeneities in the medium , and & = 1 if Ly 3> /L/k, and A(z)
is given by

A(z) = 72 [’ dK KJo(K2)87(K)/T2. (4)

Here, Jp is the Bessel function, ®1(K) is the three-dimensional spectral density
of temperature fluctuations, and T is the mean value of the temperature.

The first term in Eq. (2) is proportional to the intensity of the direct wave,
the second term is proportional to the intensity of the reflected wave, and the
third term describes the interference of the direct and reflected waves. The
factor T describes the reduction of this interference due to the presence of tur-
bulence, so we call it the *turbulence’ factor. Clifford and Lataitis also calculated
this factor for the Gaussian spectrum of temperature fluctuations.

It seems worthwhile to generalize Clifford and Lataitis’ results in the fol-
lowing manner: (1) to rigorously derive an equation for (|p|2) not only for
temperature but also for wind velocity fluctuations, since wind velocity con-
tributions to the statistical moments of a sound field in an atmosphere usually
dominate over temperature contributions; (2) to derive an equation for {|p[?) for
anisotropic turbulence, since anisotropy can dramatically affect the statistical
moments of a sound field; and (3) to calculate and compare {|p|?) for different
spectra of temperature and wind velocity fluctuations used in the literature.
These generalizations are presented below.
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2 Mean-square sound pressure

We first generalize Eqs. (2)-(4) for the case of a turbulent atmosphere with
anisotropic fluctuations in temperature and wind velocity. We start from par-
abolic equation (7.29) of reference 3] for the sound pressure p

5, 02 & mov
21k L + (ay2 ) +2k2(1+ 2)p 0. (5)
Here, (z,'y,z) are the Cartesian coordinates (see Fig. 1), the source is located
at the origin of the coordinate system, €poy = —T1/To — 2v;/co, where T ‘are
temperature fluctuations, v, are fluctuations of the wind velocity component in
the z-direction, and ¢y is the mean value of the sound speed.

The complex phase 13 of the direct wave can be obtained as the Rytov
approximation to the solution of Eq. (5):

- kzL/ dw/ dy/ dz “““Lx y:;;)
xep{ i [(z+L(hs m)) +y]} )

It is worthwhile to express the complex phase 1, of the reflected wave as a sum
of two terms: ¥, = 4; + . These terms can also be obtained as the Rytov
approximation to the solution of Eq. (5):

27, (L
by = kL/ldm/mdy hdem""(zy’z)

L —z)
X exp {E(zflj_im_) [(z + L(h,., + hr)) yz]} y (7)
and
ho= B [ [Lo [ atmed
X exp {ﬂ% [(z+2hs—-L-(ha+h«.-))2+y2]}. ®

Using Egs. (1), (6)-(8) and an approach analogous to that by Clifford and
Lataitis, we obtain the equation for {|p|?). This equation coincides with Eq. (2),
where the turbulence factor T is now given by

T=exp{—ak2L[ ©0.0) - o [ A0, 20

1 [2h.Q-Ly/L) .
+2_ha./o A(O,z)dz]}. (9)
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Here, the function A(y, 2) is given by

- 1 1 00
A(y,z) = o /: Br(z,y, z)dz + 2 /_w B.:(z,y, z)dz, (10)

where Br is the correlation function of temperature fluctuations, and B is the
correlation function of fluctuations in the wind velocity component v;. Eqgs. (3)
and (9) are similar but not identical. They differ by functions A(z) and A(0,2)
which describe random inhomogeneities in an atmosphere.

Equation (9) can further be simplified by introducing the effective height

2hgh
h = hathr®

ak?L

T= e:z:p{ / [A(0,0) — A(0, z)]dz} (11)

Egs. (10) and (11) generalize Clifford and Lataitis’ expression for the turbulence
factor T for the cases of anisotropic turbulence and both temperature and wind
velocity fluctuations.

3 Isotropic turbulence

In the rest of the paper we shall consider isotropic turbulence. In this case,
substitution of Eq. (10) into Eq. (11) yields

= eap{-amtiop [ [ 22000 G0 o - h(KAIK 2K |12

c3

where F(K) is the three-dimensional spectral density of wind velocity fluctua-
tions.

Eq. (12) for the turbulence factor T looks similar to the equation for the
coherence function I' of the direct wave from source to receiver in a turbulent

atmosphere (see Eq.(7.71) of [3]):

ezp {—n?k2L J§ dt [§° [—ﬂ,-l + —Cﬁ-l] [1 = Jof Kpt)]KdK}
(4wL)?

Here, p is the distance between two points of observation. The coherence func-
tion I' of the direct wave is one of the most important statistical character-
istics of a sound wave in a turbulent atmosphere and is presented in [3] for
the Gaussian, Kolmogorov and von Karman spectra of temperature and wind
velocity fluctuations, see Eqgs.(7.87), (7.107) and (7.114) from [3].

(L, p) =
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Let us introduce the normalized coherence function I'(L, p) = (4w L)*T(L, p).
Then, it follows from Egs. (12) and (13), that the turbulence factor T' can be
expressed in terms of the normalized coherence function: T = I'®(L,h). This
formula and Eqs.(7.87), (7.107) and (7.114) from [3] allow one to obtain the
turbulence factor T for the Gaussian, Kolmogorov and von Karman spectra of
temperature and wind velocity fluctuations.

3.1 Gaussian spectrum

For the Gaussian spectra of temperature and wind velocity fluctuations, the
turbulence factor T is given by

T =exp{—2a7SL |1 - ﬁerf D¢
T 2Dg

—207CL [1 - &erf(DG) - %e—v’o] } . (14)

Here, 7 = /Tk20% Lo/ (8TZ) is the extinction coefficient of the mean sound field

due to temperature fluctuations with the Gaussian spectrum, 4¢ = /7k?02Lo/(2¢c§)

is that due to wind velocity fluctuations, 6% and o2 are the variances of temper-
ature and wind velocity fluctuations, Dg = h/Lg is the wave parameter, and
erf(Dg) is the error function.

3.2 Kolmogorov spectrum

For the Kolmogorov spectra of temperature and wind velocity fluctuations, the
turbulence factor T is given by

3BC} o215/ LnBcﬂ}

T = (15)

T =exp {—ak2h5/3L
Here, C% and C? are the structure parameters of temperature and wind velocity
fluctuations, and the coefficient B = 0.364. The coefficient « in Eq. (15) is 1
since for the Kolmogorov spectrum the outer scale of turbulence Lo tends to

infinity.
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3.3 von Karman spectrum

For the von Karman spectra of temperature and wind velocity fluctuations, the
turbulence factor T is given by

D, 21/6t5/6
e B - ]

vk JO

K [1 - %1-(/;—%; (K5,6(t) - §Kl/s(t))H } : ~(16)

Here, K,(t) is the modified Bessel function, ¥ = 3n24k* K, S3C2./(10T2) is
the extinction coefficient of the mean sound ﬁeld due to temperature fluctuations
with the von Karman spectrum, 12X = 6x2Ak2Ky*/6C2/(5c2) is that due to
wind velocity fluctuations, the coeﬂiclent A = 0.033, K is the wavenumber
which appears in the von Karman spectrum and is inversely proportional to the
outer scale of turbulence, and the wave parameter D,x = Koh.

Equations (12), (14)-(16) are new results obtained in the paper. They clearly
show that temperature contributions to the turbulence factor T and hence to the
mean-square sound pressure (|p|?) are different from those due to wind velocity
fluctuations.

4 Numerical results

In this section using Egs. (2), (12) and (14)-(16), we numerically study the
relative role of temperature and wind velocity contributions to the mean-square
pressure {|p|?). We also compare {|p|?) for the Gaussian, Kolmogorov and von
Karman spectra of turbulence.

4.1 Temperature and wind velocity contributions

We assume that the horizontal distance between source and receiver is L = 100
m, the source height is h; = 5 m, the receiver height is A, = 3 m, and that
@ =1, i.e. the ground is acoustically hard. Using Egs. (2), (12) and (14)-(16)
we calculate the relative sound pressure level W:

W =10log ({|pI*)/p}) (17)

Here, pp = 1/74 is the amplitude of the sound pressure due to the source if there
were no ground reflection.
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Figure 2: Relative sound pressure level due to interference of the direct and
ground reflected waves in an atmosphere without turbulence.

The dependence of the relative sound pressure level Wy on the sound fre-
quency f in an atmosphere without turbulence is shown in Fig. 2. The fre-
quency range is from 200 to 2000 Hz. The figure shows several maxima and
minima in the dependence of Wy on f due to interference of the direct and
ground reflected waves.

The first minimum in W, is reproduced as a solid line in Fig. 3 in a more
narrow frequency range from 550 to 590 Hz. Other parameters are the same as
in Fig. 2. The dash-dotted line is the relative sound pressure level WX calcu-
lated in a turbulent atmosphere having temperature fluctuations only, with the
Kolmogorov spectrum. The structure parameter of temperature fluctuations,
C% = 4 x 1078T¢ m~?/3. 1t follows from Eq. (15) that the temperature fluctua-
tions decrease the value of the turbulence factor T. This, according to Eq.(2),
leads to partial destruction of the interference minimum in W. Therefore, the
dash-dotted line in Fig. 3 lies significantly higher than the solid line.

The dashed line in Fig.3 is the relative sound pressure level W) in a turbu-
lent atmosphere having wind velocity fluctuations only, with the Kolmogorov
spectrum. The structure parameter of wind velocity fluctuations, C? is chosen
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Koimogorov spectra of temperature and wind velocity fluctuations
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Figure 3: Relative sound pressure levels in an atmosphere with temperature
fluctuations (the dash-dotted line), wind velocity fluctuations (the dashed line),
and without turbulence (the solid line). The temperature and wind velocity
fluctuations have the Kolmogorov spectrum.
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to satisfy the relationship:

4C?  C%
3T

If this relationship were valid, the temperature and wind velocity contributions
to the structure parameter of acoustic refractive index fluctuations would be
the same. Eq.(18) is used in [3] and some other recent papers to compare the
temperature and wind velocity contributions to the statistical moments of a
sound field in a turbulent atmosphere. The maximum difference in WT and
WX in Fig. 3 is a few dB. This difference is of the order of the maximum
difference between WX and WX that we have numerically revealed so far for
different geometries. Note that for large enough L and k, the temperature
contribution Tr to the turbulence factor T' can exceed that due to the wind
velocity contribution T, by several dozen dB. However, in this case both Tr
and T, would be very small so Wf ~ Wg.

The temperature Wr and wind velocity W, contributions to the relative
sound pressure level W in an atmosphere with the Gaussian and von Karman
spectra of turbulence have been studied. The frequency dependence of these
contributions qualitatively coincide with those for the Kolmogorov spectrum,
shown in Fig. 3.

(18)

4.2 Different spectra

Let WX, WE and WYX be the wind velocity contributions to W for the Kol-
mogorov, Gaussian and von Karman spectra. These contributions are plotted
in Fig. 4 by the dash-dotted, dotted and dashed lines, respectively. The solid
line corresponds to Wy and is the same as in Fig. 3. It is also assumed that
C2 =17.5x 10782 m~2/3, and Ko = [0.4(hs + h.)/2] . Other parameters are
the same as in Figs. 2 and 3. In order to compare the relative sound pressure
level for the von Karman spectrum with that for the Gaussian spectrum, a re-
lationship between parameters of these spectra is needed. This relationship has
been taken from (3] (see Eqs.(6.49) and (6.51)):

I'2(1/3) -2

2 2 /3 =

o, = 7r24/3\/_c Ky, Lo = 2I'(5/6)/(I*'(1/3) Ko). (19)
If Eq.(19) is valid, the variances of wind velocity fluctuations for the von Karman
and Gaussian spectra are the same, and the integral lengths of these spectra
are equal.
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Different spectra of wind velocity fluctuations
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Figure 4: Relative sound pressure levels in an atmosphere with wind velocity
fluctuations for the Kolmogorov (the dash-dotted line), Gaussian (the dotted
line), and von Karman (the dashed line) spectra. The solid line coressponds to
the relative sound pressure level in an atmosphere without turbulence.
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It is seen from Fig. 4 that the interference minimum in the relative sound
pressure level W is significantly suppressed in a turbulent atmosphere. Theo-
retical predictions based on the Gaussian and von Karman spectra are close to
each other, while that based on the Kolmogorov spectrum differs from them.
This is explained by the fact that for values of parameters which are used in
figure, VYKL = 4L ~ 0.7 x 1073. As follows from Fig. 7 (a) of reference [4]
for such values of 7?XL = ACL, the coherence functions for the Gaussian and
von Karman spectra nearly coincide, while that for the Kolmogorov spectrum
significantly differs from them. Since the turbulent parameter T' can be ex-
pressed in terms of the coherence function (T = ['*(L, h)), the relative sound
pressure levels W for the Gaussian and von Karman spectra should be close to
each other, while that for the Kolmogorov spectrum should differ from them.

For values of y*XL = 4¢L > 100 (see Fig. 7 (b) of [4]), the coherence
function for the Kolmogorov spectrum nearly coincides with that for the von
Karman spectrum, while the coherence function for the Gaussian spectrum
significantly differs from them. In this case the turbulent parameters T for the
Kolmogorov and von Karman spectra are very close to each other, while that
for the Gaussian spectrum differs from them. Nevertheless, for such large values
of YKL = 1S L, the values of WX, WE and WX are nearly the same since T
is very small for all spectra so the third term in Eq.(2) can be omitted.

5 Conclusions

The equation for the mean-square sound pressure {|p|?) due to a point source lo-
cated above the impedance ground in an atmosphere with temperature and wind
velocity fluctuations has been derived. This equation is valid for anisotropic
atmospheric turbulence. For a particular case of isotropic turbulence, the tur-
bulence parameter T’ appearing in the equation for {|p|?) is expressed in terms
of the coherence function of the direct wave from the source to the receiver.
This important result has allowed us to obtain analytical formulas for T for
the Kolmogorov, Gaussian and von Karman spectra of turbulence. Using these
formulas, the relative contribution to {|p|?) due to temperature and wind veloc-
ity fluctuations has been studied numerically. Furthermore, the mean-square
sound pressure {|p|?) for the Kolmogorov, Gaussian and von Karman spectra
have been compared.

Acknowledgments This material is based upon work supported by the U.S.
Army Research Office under contract number DAAH04-95-1-0593.
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The fluctuating field of a monopole source in a turbulent atmosphere above a
ground surface. Time-averaged sound pressure level and statistical distributions.

Erik M. Salomons

TNO Institute of Applied Physics, P.O. Box 155, 2600 AD Delft, The Netherlands. salomons @ tpd.tno.nl

A theoretical description is presented of the propagation of spherical waves in a non-refracting,
turbulent atmosphere above a ground surface. The time-averaged sound pressure level is
expressed in terms of the coherence factor I', which is related to the mutual coherence function.
Two approaches are described to the computation of the coherence factor, a heuristic approach
and a new, rigorous approach. The rigorous approach is based on Rytov’s integral solution of the
wave equation for a turbulent medium, evaluated for the half-space above the ground surface.
The rigorous approach is an improvement with respect to the approach of Clifford and Lataitis
[J. Acoust. Soc. Am. 73, 1545-1550 (1983)], by the fact that the ground reflection of scattered
waves is taken into account. The heuristic approach is based on a well-known expression for the
coherence factor I'(p) for an unbounded system, using p = h where 4 is the maximum transverse
separation between the two sound rays between the source and the receiver (the direct ray and the
ray reflected by the ground). Daigle et al. found better agreement with experimental data by
using p=% h [J. Acoust. Soc. Am. 64, 622-630 (1978)). Here it is shown, however, that p=h
gives the best agreement of the heuristic approach with the rigorous approach, and also with
results of numerical computations with the parabolic equation method. The fluctuations of the
sound pressure level are also studied in this paper. Three different methods are developed for
computing statistical distributions of the sound pressure level. The first method assumes
Gaussian distributions for the log-amplitude and phase fluctuations of the two spherical waves
that arrive at a receiver, the direct wave and the wave reflected by the ground. This method is
similar to the method developed by Hidaka ez al. [J. Acoust. Soc. Jpn. (E) 6, 247-256 (1985)].
The other two methods are based on a Monte Carlo evaluation of the above mentioned heuristic
and rigorous Rytov solutions, respectively. The accuracy of the three methods is investigated
numerically for some situations, by comparison with results of computations with the parabolic
equation method. Further, evidence is provided for the saturation of the log-amplitude
fluctuations, for large distance and/or high frequency.

INTRODUCTION

A remarkable phenomenon in outdoor sound propagation near the ground is the occurence of
large fluctuations of the transmission loss. This means that large fluctuations occur in the sound
received from a constant source. These fluctuations originate from atmospheric turbulence.
Theoretical studies of wave propagation in unbounded turbulent media have been presented by
Tatarskii,"? Chemov® and Ishimaru.® Ingard and Maling® have indicated that the fluctuations are -
considerably larger when the source or the receiver is near a ground surface. This is a consequence of
the interference between the direct waves and the waves reflected by the ground. Small phase
fluctuations in the direct and reflected waves may cause large fluctuations in the total field, in
particular near interference minima.

Daigle et al.%® have reported several experimental and theoretical studies of sound
propagation through atmospheric turbulence near the ground. These studies have focused in particular
on the time-averaged sound pressure level, which is the quantity that is commonly used for outdoor
noise control. The theoretical approach of Daigle ez al. for computing the time-averaged sound
pressure level is based on the transverse or mutual coherence function I'(p), where p is the transverse
separation between two distant receivers in an unbounded turbulent system with a monopole source.
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For the system with a ground surface and a single receiver, Daigle et al. use for p the maximum
transverse separation between the two sound rays between the source and the receiver (the direct ray
and the ray reflected by the ground), multiplied by an empirical factor %>. The empirical factor ¥ was
introduced to obtain agreement with experimental data. The heuristic approach of Daigle et al. was
generalised by L’Espérance et al.’ to downward refracting, turbulent atmospheres, with more than two
(curved) sound rays between the source and the receiver.

Inspired by the work of Daigle et al., Clifford and Lataitis'® presented a rigorous approach to
the computation of the time-averaged sound pressure level, and obtained a result that is energy
conserving. A problem with the approach of Clifford and Lataitis is the fact that the ground reflection
of scattered waves is ignored. This causes inaccuracies when the source or the receiver is close to the
ground surface.

This paper presents a rigorous approach to the computation of the time-averaged sound
pressure level in a system with a monopole source in a turbulent atmosphere above a ground surface.
The approach presented here is more direct than the approach of Clifford and Lataitis, and moreover
does not ignore the ground reflection of scattered waves. Another advantage of the present approach
is the fact that it is based on a stochastic Fourier-Stieltjes expansion of the fluctuating field of the
acoustic index of refraction in the turbulent atmosphere. This stochastic expansion allows an
extension of the present approach to the computation of statistical distributions of the sound pressure
level, as will be shown in the second part of this paper (see below).

One of the reasons for developing the rigorous approach was to study the accuracy of the
heuristic approach of Daigle er al. In particular, it will be shown by comparison with computational
results of the rigorous approach that there is no theoretical justification for the empirical factor %.
This implies also that the empirical factor ¥ should not be used in the generalised approach for a
downward refracting atmosphere.’

The second part of the paper is devoted to the fluctuations of the sound pressure level in a
system with a monopole source in a turbulent atmosphere above a ground surface. Numerous
experimental studies of outdoor sound propagation near the ground have focused on the fluctuations
of the transmission loss. **'"*!” These studies indicate that the fluctuations are usually considerably
larger than 10 dB, for 3propagation distances of a few hundred meters or more. The measurements of
Parkin and Scholes'*'® show standard deviations up to 10 dB. Daigle et al.® have provided
experimental evidence for a saturation of the log-amplitude fluctuations, while the phase fluctuations
increase with distance without limit.

In this paper, three methods are developed for computing statistical distributions of the sound
pressure level in a system with a monopole source in a turbulent atmosphere above a ground surface.
The first method is similar to the method developed by Hidaka ez al.'® This method assumes Gaussian
distributions for the phase and log-amplitude fluctuations of the direct and reflected waves. The other
two methods are extensions of the two methods for computing the time-averaged sound pressure level,
which are presented in the first part of this paper.

It is assumed that the time-averaged atmosphere is non-refracting. Therefore, the validity of :
the results is limited to relatively short propagation distances and/or weakly refracting atmospheres ’
(this limitation does not apply to the above mentioned conclusion about the use of the empirical factor
14). This work should be considered as a basis for future work for refracting atmospheres.

L. SYSTEM

A system is considered with a harmonic monopole source and a receiver above a ground
surface, in a turbulent atmosphere (see Fig. 1). It is assumed that the ground surface is reflecting (i.e.,
rigid), but the extension to a finite-impedance ground surface will also be discussed. A rectangular xyz
co-ordinate system is used, with the source at position (0,0,z,) and the receiver at position (L,0,z,). The
ground surface is at z = 0. We assume L >> z;, z,.
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The turbulent atmosphere is modelled as a non-moving medium, with an (effective) sound
speed that represents both wind speed and temperature fluctuations. It is assumed that the
time-averaged atmosphere is non-refracting, so that the acoustic index of refraction n = co/c (c is the
sound speed and c, the average sound speed) can be written as n(x,y,z) = 1 + y(x,y,z), where the
fluctuation # has zero time average, < i > = 0. Averaging over the time will be performed by
ensemble-averaging over different random realisations of the turbulent atmosphere. It is assumed
further that the turbulent atmosphere is homogeneous and isotropic, either in three dimensions or in
two dimensions (see below).

! ' ! ] ]
€] K— scattering volume —3 ® ¥— scattering volume ——3f
!

ground

FIG. 1. Tllustration of the rigorous (a) and heuristic (b) approaches to the computation of sound propagation from
a source to a receiver in a turbulent atmosphere above a ground surface. Thick solid lines represent the sound
rays corresponding with the direct and reflected waves. Thin solid lines represent waves that reach the receiver
by scattering at turbulent inhomogeneities in the atmosphere.

II. GENERAL EXPRESSIONS
The fluctuating sound pressure field at the receiver is written as the sum of the direct field and
the field reflected by the ground surface:

P=p+p; (1)
with
exp(ifkr; —ot]l+y ;) .
P;=Po 1 2 forj=12 )
rpln
where
y;=x;+iS;=In(p;/ p;o) (3

with x; the log-amplitude fluctuation and S; the phase fluctuation, and pjo the value of p; in a’
non-turbulent atmosphere (y; = 0). Here py is a constant pressure, @ the angular frequency, k =@/ ¢,

the wave number, ro=1m, r,=yL*+(z,—z,)° and r,=yL* +(z, +2,)* . The amplitude and

phase fluctuations originate from sound speed fluctuations, i.e., atmospheric turbulence. The phase
fluctuations have zero time average, <Sp> = 0, but the time average of the log-amplitude fluctuations is
different from zero (see below).

Following Clifford and Lataitis,'® we assume T << 7, where T=2x/w is the period of the
harmonic waves and 7, is a characteristic period of the turbulence. In other words, we assume that the
relevant turbulent fluctuations are slow compared with the harmonic variations of the acoustic waves.
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The sound pressure p(t) is equal to the real part of the complex sound pressure p given by
Eq. (1). The (fluctuating) short-time average of the squared sound pressure is —p;z(—t) =1lpp*,an
average over time 7, with T << 7, << 7. The corresponding (fluctuating) relative sound pressure
level (i.e., sound pressure level relative to free field) is AL=101g (m/ p,_(,2 (t)) , with

Pro (=% p,’r,% / n® . The long-time average is < p>(f) >=<1 pp*>, an average over time 7., with
7. >> %. The corresponding (time-averaged) relative sound pressure level is
<AL>= 10]g(< IR0 >l<p,.02(t)>).

From Eqs. (1) to (3) one finds the relation'®

2
AL=101g {exp(2z,) +— exp(Zx,) +2—exp( X1+ X2 )cos(kr, — kr, +AS)] @)

n’
with AS =S, - S, . For the generalisation of Eq. (4) to a finite-impedance ground surface, see Hidaka

et al."® For the long-time average < AL >, we find from Egs. (1) to (3):
2

<AL>=10lg {<exp(2x,)>+-r—'5-<exp(2x2)>+
£ )
+ r—'[exp(i[kr, —kny]) <exp(y, +y,*)>+exp(-ifkr, — kr,]) <exp(y, *+y,) >]}

To evaluate this expression, we assume that ; and S are random variables with Gaussian
distributions, and use the relation™!

<exp(ay)>= exp(-%-azo').2 +a<y>),
for a Gaussian random variable y, with & yz =<(y- < y>)? > and a a constant. For the evaluation of
the first two terms in Eq. (5), we find
<exp(2y;)>=exp(20, * +2< 1, >),
with axl" =<(x;-<X; >)? > the variance of the log-amplitude fluctuations. Conservation of

energy implies <exp(2y;)>=1, and we find the relation < 3 ; >= -O‘ZI2 (see Clifford and

Lataitis,'® or Tatarskii’ section 70). The other two terms in Eq. (5) can be evaluated in a similar way.
This gives:
2

<AL>= lOlg(1+ +2—1‘°) 6)
"2
with :
T, =exp(< 1,22 > 2 z' -1 o'z2 =< >< X, >+<S§,S, >—-;—<:s'sl2 —%oszz) D
XCOs(kry = kn+< 1,8, > =< X538, >+ < 1,85, > =< 1,5, >)
where
2_ 1 2
O ==TH{F+<y; > ®
o5} =<S}>

: 2 . 2 _ _ 2 2
The expression for o 2 follows from the relations Gy, = <(xj—<x;>)>and<y;>= Gy,

. 2 1 2 2 : - 2
For weak turbulence with < ¥ ;° > << ¢ we have Gy, =<Xj >. Using <y, >= o, we find that
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for < x> > <<% the term < %, >< %, > in the exponent in Eq. (7) can be neglected (this term is
missing in the article of Clifford and Lataitis'®). Finally, the terms < ¥ ;S, > in the argument of the

cosine in Eq. (7) may be neglected for weak turbulence'® (see Section IIL.D). This gives:
2

<AL>=10lg (l+ =+ 2—cos(kr, kr,)T) )
rz 2
with the coherence factor I" given by:
F=exp(< )X, >—+< 1’ >-4< 1, >+<5,5,>=1<87 >-1<5,%5) (10)

The problem of computing < AL > is reduced to the problem of computing I" for a system with a
ground surface. This will be the subject of Section III.
It follows from Egs. (1), (2) and (9) that the coherence factor can also be defined as:
= <p1p2*>+<pl*p2> (ll)
SPIP*>0t<p* P>

where index 0 is used for a non-turbulent atmosphere. The quantity <p;p,*> is usually referred to as
the mutual coherence function (MCF). Thus, the coherence factor I" is equal to the real part of the
MCF, normalised to unity for a non-turbulent atmosphere.

In Refs. 2 and 4 an expression is derived for the MCF, for the field of a monopole source in
an unbounded turbulent atmosphere (i.e. a system without a ground surface) (see Eqs. 20-64 and
20-69 in Ref. 4, or section 70 in Ref. 2). In this case, p; and p; are the complex sound pressures at two
distant receivers in the unbounded atmosphere. The derivation is based on the parabolic equation
approximation. Insertion of the expression for the MCF in Eq. (11) yields exactly the result (10) for
the coherence factor I', which was derived from the assumption of Gaussian distributions for y; and S;.
This agreement may be considered as an indirect confirmation of the Gaussian distributions (this
confirmation is valid only for weak turbulence, as we assumed that the turbulence is weak in the
derivation of Eq. 9).

I1I1. TIME-AVERAGED SOUND PRESSURE LEVEL

In this section, we develop expressions for the coherence factor I for a system with a ground
surface. In Section III.A, we first develop an expression for I' for an unbounded system. In Section
I11.B, an approximate method is described to use this expression for a system with a ground surface. In
Section III.C, a rigorous derivation is presented for a system with a ground surface. In Section ITI.D,
some numerical examples are presented.

IT1.A. Coherence factor for an unbounded system

In this section we give expressions for the coherence factor I' for an unbounded system with
isotropic or axlsymmetnc turbulence. The expression for isotropic turbulence follows directly from
previous work.>* The expression for axisymmetric turbulence is useful for comparison with numerical
results of computational methods such as the parabolic equation (PE) method."%°

A.l. Isotropic and axisymmetric turbulence

In this paper we consider turbulent atmospheres that are homogeneous and isotropic either in
three dimensions or in two dimensions. Turbulent atmospheres that are homogeneous and isotropic in
two dimensions are of interest for comparison with results of computational methods based on the
axisymmetric approximation (such as the PE method). The axisymmetric approximation implies that
the system has rotational symmetry around the vertical axis through the source, and the computations
are performed in a vertical plane, say, the xz plane. For PE computations for a turbulent
atmosphere,'*?* it is assumed that the turbulent field is homogeneous and isotropic in the xz plane and
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independent of the y co-ordinate. This type of turbulence will be referred to as axisymmetric
turbulence, in the following. Three dimensional homogeneous and isotropic turbulence will be
referred to simply as isotropic turbulence.

A.2. General expression for the coherence factor

We consider an unbounded turbulent atmosphere with a monopole source at position
7, = (0,0,z;) and two distant receivers at positions 7, = (L,y),z) and i, = (L,y2,22)
(with L >> yy, 21, Y2, 22, 2). In general, the covariances <¥; 2> and <5,5,> depend on both 7, and 7.
In the case of homogeneous turbulence, the covariances depend only on the vector 7; -7, . In the case
of (homogeneous and) isotropic turbulence, the covariances depend only on the distance p=17 -5 1.
In the case of axisymmetric turbulence, we consider only systems with y; = y =0 and again the
covariances depend only on p =17 -7, |. The covariances are denoted as B,{p) = <x1x2> and
Bs(p) = <8,5;:>. The coherence factor (10) becomes:

T'(p) =exp(B,(p) - B, (0) + Bs(p) - B5(0))] (12)

for an unbounded system.

A.3. Rytov’s first-order solution

Before we give the expressions for the covariances B,{p) and Bs(p) in the next section, we
briefly describe Rytov’s first-order solution® and other basic steps in the derivation of these
expressions.

We consider an unbounded system, with a monopole source at position 7, = (0,0,z,) and a
receiver at position 7 = (L,y,z). The turbulent atmosphere is represented by the fluctuating acoustic
index of refraction y(x,y,z). The corresponding fluctuating sound pressure field is represented by the
quantity y = Inp/po, where p; is the undisturbed sound pressure. Application of Rytov’s perturbation
method to the constant-frequency wave equation for a non-moving atmosphere (for a moving
atmosphere see Ostashev et al.") yields the following first-order solution for y':

V()= [ W7 (13)
.

where the integral is over the scattering volume V' between the source and the receiver: r'=(x',y",z')

with 0< x'< L (backscattering is neglected). The function h(r,r') is given by:
2 S_A Yy - 2
hF.F) = k expli kI(p'-p,) = (x'IL)(p-p,)
2n(x'ILY(L-x") 2 (x'/LY(L-x")
with p=(,2), p'=(¥',2") and p,=(0,z,). The fluctuating field u(7') is represented by the following
stochastic Fourier-Stieltjes integral:

(14)

H(F') = [ expR.p)dv(x' B) 1s) ;
with K = (x,,x,) and random amplitudes dv that satisfy the relation
<dv(x',K)dv*(x",K') > = F, (x'-x",K) §(K -K') di dK’ (16)

where 8(k — k") is the Dirac delta function and the function F, (x,k) is related to the
three-dimensional spectral density @, (k) of the function u(¥) by:

[ Fux®ydx =21 @, (k) a7
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The functions Fy, and @, for isotropic and axisymmetric turbulence are described in Appendix A.

From Egs. (13)-(17), expressions for the covariances B,{p) and Bs(p) have been derived (see e.g.
Ref. 4). In the next section, these expressions are evaluated for isotropic and axisymmetric turbulence.

A4. Evaluation for isotropic and axisymmetric turbulence
In this section, we use the notation B, = B, and B, = B;. Rytov’s method yields the following
general expression for B; (j = 1,2) for homogeneous turbulence:*

1 . o
B,(P)=2n Ljdr J' j' exp(R.pOH [ Li(1-1),K] ©, () dic ,dx, _ (18)
0

with k= fic, > +x,% , H,(x,x)=ksin(bxx?/ k) and H,(x,K)=kcos(}xk?/k). In the following,
Eq. (18) is evaluated for isotropic turbulence and axisymmetric turbulence.

A4.a, Isotropic turbulence

For the case of isotropic turbulence, a transformation to polar co-ordinates x; 6, is applied in
Eq. (18). This gives:

B;(p)=4r’L j dt] Jo(xpO)H (Lt(1-1),K] D, (x) k dxc (19)

with Bessel function Jo. The coheren(::e f?actor given by Eq. (12) becomes:
I'(p)= exp[m’u’jd:]"uo (xp)-1]®,(x)x de (20)

For a Gaussian correlation function :)f tl(':e fluctuating index of refraction:

B,(N=H eXP("-;;') @1)

with i, the standard deviation of u and a the correlation length, we have:
D, ()= 1’ g‘:%exp(— "2’3 (22)

and we obtain:

B;(p)= %nlnuzpoza3j[F(pt,0,%az Y+ (=17 Fipt, Lx(l—t)/k,lazll dr (23)

0
with the function F(¢, 8,7) defined and evaluated in Appendix B. Using the relation

F(pt,0,+a%) - F(0,0,4a%) =2a *[exp(-p*1? / a®) - 1], the following expression is obtained for the
coherence factor:

T(p)= exp(- n‘"szzﬂoza[l -iz'? EMD (24) |

(p/a)

where erf(x) =2 "2 [; exp(—1?)dt is the error function.

A4.b. Axisymmetric turbulence
For axisymmetric turbulence, we set B, (7)=B, (w/ x> +2%) so that B, (r)=1 for vectors 7
perpendicular to the propagation plane y = 0. This implies (see Appendix A):

@, (R)=F,(fx,? +x.2)8(x,) (25)

€
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with K= (x,,x y+K ;) Fy the two-dimensional spectral density of the fluctuating index of refraction,
and & the Dirac delta function. Equation (18) becomes (denoting x; as x):
1 .
B;(p)=4x L [di [ costxpn)H [ Li1- 1)) F, ) dic (26)

o 0
The coherence factor given by Eq. (12) becomes:

1 o .
T'(p) = exp| 4 Lk?® J dtj [cos(xpt)-1] F, (K)dif] @7
o 0

For the Gaussian correlation function (21), we have:

2 2.2
2a K°a
Fy ()=, z;eXp(— 2 ) (28)
and we obtain:
1
B,(p)=-;-Lk’yozazj[l(p:,o,laz)+(-1)f I[pt,Lr(l-t)lk,-’-aZ]]dt (29)

0
with the function /(a, 8,7) defined and evaluated in Appendix B. Using the relation

1(p1,0,+a%) - 1(0,0,4a*) = n"%a™' [exp(-p?t? / a*) — 1], the expression (24) is obtained for the

coherence factor. Thus, the coherence factor for axisymmetric turbulence is identical with the
coherence factor for isotropic turbulence, in the case of the Gaussian correlation function (21).

ITLB. Heuristic approach for a system with a ground surface

The unbounded system studied in the previous section is geometrically equivalent to a system
with a ground surface, by using the ground surface as a symmetry plane. The two receivers in the
unbounded system correspond with the receiver and the image receiver in the system with the ground
surface. This suggests that the expressions derived in the previous section for the covariances Bfp)
and the coherence factor I'(p) may be used also for the system with the ground surface. The only
problem is the fact that the turbulent atmosphere in the unbounded system is completely random
whereas the turbulent atmosphere in the system with the ground surface has the ground surface as a
symmetry plane. The image atmosphere below the ground surface is an exact copy of the atmosphere
above the ground surface. As a consequence, for the argument p of the functions B(p) and I'(p) one
should not use the separation 2z, between the receiver and the image receiver. A better choice for p is
the maximum vertical separation = 22,2, / (z,+2,) between the two sound rays between source and
receiver, the direct ray and the ray reflected by the ground surface (see Fig. 1a). The mean vertical
separation between the two rays in the unbounded system (see Fig. 1b) is then equal to z.z,/ (z,+2,),
which is identical with the mean vertical separation between the two rays in the bounded system.
Thus, Eq. (9) becomes:

2
<AL>=10lg [l +:'—2— + 2:—'cos(krl ~kr, )I"(p)) (30)
n 2

with I'(p) given by Eq. (12) with p = h. It should be noted that Daigle ez al.® found best agreement
with experimental data by setting p = 1 h. The generalisation of Eq. (30) for a finite-impedance

ground surface is given in Refs. 7 and 10.

1
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III.C. Rigorous approach for a system with a ground surface
C.1. Derivation

In this section we present a rigorous derivation of expressions for the covariances in Eq. (7)
and in the coherence factor (10), for a system with a ground surface. The received field is the sum of
the direct field and the field reflected by the ground (see Fig. 1). The fluctuating direct and reflected
fields can be computed with Rytov’s solution (13) evaluated at the receiver position r = (L,y,z) and
the image receiver position 7. = (L,y,-z), respectively. This means that we replace the half-space
system with ground surface by a full-space system without ground surface. As the atmosphere for
z < 0 must be a mirror image of the atmosphere for z > 0, we use the field u(x',y',1z'l) instead of
u(x',y',z') in Eq. (13). Using Eq. (15), Eq. (13) becomes:

L oo e

W(L.y,2)= [ [drdydz [explin,y+ir,1ZDh(F, FIdV(=' x, . K,) 31)
0 —ec—eo
with
2 ' ' 2 1 2
h(F.F") = k ::xp[i k- /D) ]exp[i k_lz-z) ] 32)
2n(x'ILY(L-x") 2(x'/IL)(L-x" 2 (x'"/ILY(L-x")

where z, =(x'/L)z+ (1- x'/L)z,. The integral over y' in Eq. (31) can be evaluated (using the
relations given in appendix C):

= o Y=Y Y,
-I“exp(nc,)’ )exr{lk—Z(x' IL)(L—x')]dy =

exp(ix).yx'lL)1,%{-(L—x')(l-l-i)exp(—i wi(i—'——x')xyz)

The integral over Z' is written as:

Texp(ix' 1) exp P oY S PR (34)
: 2(x'IL)Y(L - x') 1oz

(33)

-0

_ T . . (Z'—Zl)2 , |
I,= }[exp(z K2 )exp(xk 20D )}lz (35)

with

2(x'/L)(L - x")
These integrals can be evaluated (using the relations given in Appendix C):

I, =exp(ix,z,)J%%(L-x')(m)exp(-ii’ilﬁ"—z(f'—"')-x,’)-;-[l-(1-i)F,(v, N (7
1, =exp(-ix,z, )J%%(L-x’)(l +1) exp(—i-(-{',l'—)z(k——wlxzz)%[l—(l =i)F,(v;)] (38)

with v, =—zJa +1x,/Ja, v, =z,da+1x,/Ja ,where a=k /[2(x'/LY(L- x")], and
Fr(x)= C(xJ 2/ 1) +iS(xJ2/ 1) where C and S are the Fresnel integrals. Equation (31) becomes:

-0

0 (Z-z,)?
I, = Jexp(—i K zz‘)exp(ik .__L_)dz' (36)

L
W(L,y,2)= [d¥ [T(x' X, k., 3, 2dV(x' k. K,) (39)
0

with
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(—’CL);%—Q 2 )exp(nc yyx' IL){exp(ix .2;) +[1 - (1= ) F, (v; )]+
exp(—ix,z,)3(1-(1- i)F, (v2)1}

The log-amplitude fluctuation y and the phase fluctuation S are obtained from y by the relations

x= (W y*)/2 and S = (y=y*)/(2i). Since U is real, we have dv *(x',—K) =dv(x',K) , so that Eq. (39)

gives (with the substitution ¥ — =X ):

T(x' Ky K, ) =ik exp( 40)

L
¥*(Ly2)= [de [T*(x' ik, K, 3, 2)dV(x' K, K, 41)
J .
We obtain
L
ALy, = [de [T,(x %, K, 3, dV( K, K,) “2)
0
L
S(Ly.y= [ de [T(x' x5, 0dV(x K . K,) (43)
0
with
T,(x',X,.K,,3,2) =5[T(x',x .k, ,2) + T *(x' =K ,,~K;, ¥, 2)] (44)
7:’(x K',.Kz,y,z)——[T(x Ky’xz’y’z) T*(x -K Kz’y’z)] (45)

This gives, using Eqs. (16) and (17) (for details, see the corresponding derivation for an unbounded
system’):

< ALyz) A (Liyzg) >= 27rjdnj [T 3, 20)T, 1, 5,312,209, R i, (46)

<S(L,y,2,)S(L,y,2,0) > = 2zrj dn J’ j T(K, K, 3, 2,0)T; * (1K, K, 3, 2,0) @, (K)dx dx, (4T)

-—00 =80

<ALy z)S(L Y 2,) >= 27 j [ [T 0K e 32T, K 322,00, (R0 i, (48)
where T,* = T, and T/* = T;. For convenience, the variable 7 running from 0 to L may be replaced by
the scaled variable 7 = 7/L running from 0 to 1. With the expressions (46) to (48), the covariances in
Egs. (7) and (10) can be computed. The covariances <y, 12>, <5)52> and <y, 5,> are obtained by
setting z,y = z and z,2 = - z (z is the height of the receiver, -z the height of the image receiver). The
covariances <y, 11>, <5)51> and <x5,> are obtained by setting z,; = z and z,>= z. The covariances
<pa)>>, <S252> and <x»S»2> are obtained by setting z,; = -z and z,; = -z. With these expressions for the __
covariances, the time-averaged relative sound pressure level (9) can be computed. One may also use
the more rigorous Egs. (6) and (7), if necessary.

As indicated before, we consider the two cases of isotropic turbulence and axisymmetric
turbulence in this paper. For isotropic turbulence we have &, (i) = &, (x) . For axisymmetric

turbulence, we have (see Appendix A) @, (K= F, (Jk‘,2 + xzz )o(x y) » and after substitution in
Eqgs. (46) to (48) (with x; = 0) the integral over x; can be performed analytically.
The rigorous computauonal approach presented above is an improvement with respect to the

approach of Clifford and Lataitis.'® Their approach ignores the ground reflection of scattered waves,
or equivalently, the scattering from the image atmosphere below the ground (see Egs. 7 and 8 in the
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article of Clifford and Lataitis). This causes inaccuracies when the source or the receiver is close to
the ground surface. '

C.2. Interpretation
Instead of using the concept of the image atmosphere below the ground, one can also derive
Eq. (31) by using the half-space Green’s function
G(F —F')=exp(iklF = 7'l) / AnIF = F'| + exp(ik|F —7'1) / 4nlF - 7,1,
with F'=(x",y',2') and 7;'=(x',y',~2'), instead of the full-space Green’s function
G(r ~F')y=exp(iklF = F'l) / 4=l = 7'l
in the derivation of Rytov’s solution (13). The second term in the half-space Green's function

0
represents the ground reflection of scattered waves. This term corresponds with the integration J '

in Eq. (31), i.e., scattering from the image atmosphere below the ground. The physical scattering
volume is of course limited to z'>0.

For a possible generalisation of the rigorous approach to a finite-impedance ground surface,
one might include a spherical-wave reflection coefficient in the second term of the half-space Green’s
function. The problem is that this reflection coefficient is a complex function of 7', so the derivation
given in the previous section becomes very complicated for a finite-impedance ground surface. For
lack of a solution to this problem, one may neglect the effects of ground absorption on the coherence
factor. This seems a reasonable approximation.

I1.D. Numerical examples

For the numerical examples presented here, the Gaussian correlation function (21) of the
fluctuating index of refraction was used, with a = 1.1 m and z, = 10°° (unless indicated otherwise).
The values of a and y15° are based on the work of Daigle ef al.

Figure 2 shows an example of the observation that the heuristic approach for the coherence
factor is in reasonable agreement with the rigorous approach. The figure shows the coherence factor I"
and the covariances <y;1:> and <S;S;> as a function of the receiver height z,, for isotropic turbulence,
Z:=2m, L =40 m and f= 1000 Hz. For receiver height z,= 0 we have I" = 1, as the receiver and the
image receiver coincide in this case. Symbols in the figure represent the heuristic approach for p = A,
p= %+ hand p=2h (see Section I1.A.4.a), lines represent the rigorous approach (Egs. 46 and 47). The

agreement between the heuristic approach and the rigorous approach is best for p = h. The agreement
for p = h is better for the coherence factor I than for the covariances. Apparently, some cancellation
of deviations occurs in the summation in Eq. (10). The agreement for p= h confirms that p=hisa
good choice for the argument of the coherence factor in the heuristic approach.

A similar agreement between the two approaches was observed for the following situations:
(z» L, £, 1) = (2, 40, 250, 10'%), (2, 40, 1000, 3x10%), (2, 10, 1000, 10'%), (2, 200, 1000, 10'%), and
(5, 40, 1000, 10°°) (with z, and L in meters, fin Hz). The largest deviations for I" were observed for the
situation with L = 200 m: e.g. for z, = 1 m the heuristic approach with p = h gives I' = 0.65 while the
rigorous approach gives I' = 0.57.

For the six situations indicated above, we also determined the magnitude of the sum
& =< 1,5, > =< 1,5, >+ < X,5; >—-< 2,5, > in the argument of the cosine function in Eq. (7), for
0 <z, £4 m. The sum &S was neglected in the derivation of Eq. (9). For the five situations with
L £40 m we found 1851 < 0.03, for the situation with L = 200 m we found 1551 < 0.18.

Figure 3 shows the time-averaged relative sound pressure level < AL > for four situations:
(. z) = (250, 3), (500, 2.4), (1000, 1.5) and (2000, 0.9) (with fin Hz and z, in m). We used equal
source height and receiver height, i.e., z, = z,. The lines represent the heuristic approach for p= A,
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Nicholson parabolic equation (PE) method.'*? The agreement between the heuristic approach and the

PE results is best for p = h. The relative sound pressure level is too low for p= £ k and too high for
p = 2h. For comparison, we also included results for a non-turbulent atmosphere. As expected,

turbulence causes a reduction of the depth of the ground interference dip. For the PE computations we
used a grid spacing of 0.14 (4 is the wavelength) and a system height of 2000 grid spacings, including

an absorbing top layer of 1000 grid spacings to eliminate spurious reflections from the top surface.
The PE results were obtained by averaging over 500 random realisations of the turbulent atmosphere.
Since the PE method assumes that the system has axial symmetry around the vertical axis through the
source, the turbulent field is axisymmetric in this case. Therefore the lines were also computed for

axisymmetric turbulence. The difference between the levels for axisymmetric turbulence and isotropic

turbulence, however, vanishes in these cases, with a Gaussian correlation function of the fluctuating

index of refraction.
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FIG. 2. The covariances <x;x:> and <S;5;> and the coherence factor I" as a
function of the receiver height z,, for a system with source height z, = 2 m,
source-receiver distance L = 40 m and frequency 1000 Hz.
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FIG. 3. The time-averaged relative sound pressure level <AL > as a
function of range L, for four frequencies. The lines represent analytic
solutions computed with the heuristic approach, symbols represent
computations with the PE method.

III.E. Concluding remarks

The rigorous approach for computing the time-averaged sound pressure level, which was
presented in this section, requires the evaluation of triple integrals. With current computers this is a
numerical problem that is easily solved. The heuristic approach for computing the time-averaged
sound pressure level, however, requires considerably less numerical effort, and appears sufficiently
accurate for most practical applications. We have shown that p = 4 is the best choice for the argument
of the coherence factor in the heuristic approach, where 4 is the maximum transverse separation .
between the two sound rays between the source and the receiver. In contrast, Daigle et al.® found ;
better agreement of the heuristic approach with experimental data by setting p= % h. The reason for

this is not clear; inaccuracy in the description of the turbulent atmosphere may have played a role.

Further, we have shown that for a comparison between PE results and analytic results, a
distinction should be made between axisymmetric and isotropic turbulence, except for the case of a
Gaussian correlation function of the fluctuating index of refraction.
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IV. STATISTICAL DISTRIBUTIONS OF THE SOUND PRESSURE LEVEL

* Using Eq. (4), statistical distributions of the fluctuating relative sound pressure level can be
computed from statistical distributions of the fluctuating variables ¥, x> and AS. In this section, three
methods are described for computing these distributions.

IV.A. Computational method 1: Gaussian distributions of 1), 1> and AS

In this section, the first computational method is described for constructing a statistical
distribution of the fluctuating relative sound pressure level. The method is based on the assumption of
Gaussian distributions for Y3, Y2 and AS, and is similar to the method developed by Hidaka et al'®
Two different approaches are described to the numerical implementation of the method. The first
approach is straightforward, but numerically rather inefficient. The second approach is more efficient.

A.l. Straightforward approach
The random variables AS and y; (j = 1,2) are discretized as follows:
AS, =kd&S, withk=-K -K+1,...K

Lin=mdy, withm=-M,-M+l,...M

Xan=ndy, withn=-N,-N+l,..,N.

Here K, M and N are large integers, and &S and Jy are small discretization intervals. We introduce the
probability distributions wy, v, and v,

w, is the statistical probability that AS lies in the interval between AS; -+ &5 and AS; +7 &5,

V., is the statistical probability that ¥, lies in the interval between Yy » -+ 8y and i + 5 &%,

v» is the statistical probability that y, lies in the interval between x5, -3 6y and Y2, + 7 0%

Following Refs. [18,22], we assume that AS, ¥, and ¥, are independent Gaussian random variables,
with probability distributions:

1 As,?
=— exp| - & 49
wl: c“m p( 20_“2) ( )
—<7,>)?
v, = 1 exp —(x"'" A':' ) &y (50)
o, 2n 20‘z

and analogously for v,. We have used here o, , =0y, =0, ,as we assumed L >> z,, z. We use the
relation < x; >=-0 zz in Eq. (50) (see Section II). The variances 0s® and axz are given by:

Ou’ =< (AS) >=<(S,-5,)* > (51

c,’ =--;-+1’;§-+< x> 52y ;
For weak turbulence with < x ;> > <<, Eq. (52) gives 6,2 =< ;* > . Following Refs. [22, 8], we

express Oas” in terms of the correlation function Bg(p) = <S(r) S(r+p)>:
O as? =2B5(0)- 2B, (p) (53)

o’ =—-;-+,’%+ B, (0) (54)

For the correlation functions Bs(p) and B,(p) we use free-field expressions, derived in Refs. [2,4] for
an unbounded system with a monopole source in a turbulent atmosphere and two distant receivers
separated by a distance p (see also Sections III.A,B). In this case we consider a system with a ground

and

and similarly for o,
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surface and a single receiver, and we use for the distance p the maximum vertical separation
h=2zz,/(z;+2,) of the two sound rays between the source and the receiver, the direct ray and the ray
reflected by the ground surface. :

Using Eqgs. (4) and (49) to (54), we construct a statistical distribution for the fluctuating
relative sound pressure level. It consists of discrete values ALy, of the relative sound pressure level,
with statistical weights wyv.v,. The long-time average of the relative sound pressure level is:

<AL>=10lg| Y w,v,v, 1o“-“°) (55)
k.mn

We define separate variances for the positive and negative deviations of the relative sound pressure

level from its long-time average value (55):

0= 2 *wv, v, (AL, —<AL>)?/ z T wv,v, (56)
k.mn kman
where the sum is over indices &, m, n with AL, > <AL>, and
o'_z = z T wv,v, (ALhm— < AL>)2 / Z T wv,v, 57
k.m.n k.man

where the sum is over indices &, m, n with AL, < <AL>. The positive deviations from the long-time
average are represented by the level AL, = <AL> + g,, the negative deviations by the level
AL_=<Al>-0._.

A.2. Alternate approach

A more efficient approach makes use of random numbers with Gaussian distributions.
Various algorithms exist for generating a set of random numbers with a Gaussian distribution.”® The
approach is as follows. We generate a set of random values of AS with distribution (49), a set of
random values of ¥; with distribution (50), and a set of random values of X2 with a distribution given
by the analogue of Eq. (50). The three sets have equal lengths Neangom (e.8. Neandom = 50 000).
Substitution in Eq. (4) yields a set of values of the relative sound pressure level, which has
automatically the correct statistical distribution. This means that Eqgs. (55), (56) and (57) hold with all
Wy, vy, and v, equal to unity.

IV.B. Computational method 2: Monte Carlo evaluation of Rytov solution for unbounded
system

Following the heuristic approach presented in Section IILB, the fluctuating variables y; and
¥, in Eq. (2) can be computed for an unbounded system with a turbulent atmosphere and two
receivers 1 and 2 at x=L, at heights z) =z, and z; =z, - h, respectively. The vertical separation of the
receivers is h = 2z,2,/(z-+z,), the maximum vertical separation of the two sound rays between the
source and the receiver (see Fig. 1). In this section, a computational method is described for
computing random realisations of the fluctuating variable y (i.e. ¥; or ) in an unbounded system.
The method is based on the first-order Rytov solution for weak turbulence, and makes use of random
realisations of the fluctuating field p. This approach may be considered as Monte Carlo sampling of
Rytov’s solution.

B.1. Rytov’s first-order solution

We consider an unbounded system, with a monopole source at position 7, =(0,0,0) and a
receiver at position F =(L,y,z) =(L,p), with p=(y,z). The fluctuating sound pressure field at the
receiver is p, the undisturbed field is po. Rytov's first-order solution for the function y= Inp/p, is
given by Eqs. (13) and (14) in Section IIL.A. The fluctuating index of refraction g was written as a
Fourier-Stieltjes integral:

W



u() = [ explR. p)dv(x' k) (58)
with ¥ =(x,,k,) and random amplitudes dv. Using Egs. (14) and (58), Eq. (13) yields:*

L
w(L,p) = J dx'_[ exp(iR. p X' ILYH[(x IL)(L - x'), R1dv(x', ) (59)
0
with

L(xILY(L - x") K,] 60)

H[(x'ILXL - x'),x]=ik exp[—z ok

with x? = lc,.z + xzz . Equations (58) and (59) will be used for the computations of random

realisations of the fluctuating fields i and . From the realisations of y, we obtain statistical
distributions of the phase and the amplitude of spherical waves in a turbulent atmosphere.

This approach can also be applied to axisymmetric systems. These systems have axial
symmetry around the vertical z axis through the source, and are described in the xz plane. In this case
we have 7 =(L,z), p=z, K=k, in Egs. (58) to (60), and k2= lczz in Eq. (60). Computations for
axisymmetric systems are useful for comparison with results of numerical simulations with the
axisymmetric PE method. These simulations are based on the same random realisations of the field u
as Eq. (59) is, i.e. the simulations are based on Eq. (58).

B.2. Construction of realisations of the fluctuating fields /¢ and y
The discrete approximation of Eg. (58) for the field p is:

N
u(r)= Zexp(ir?,,.b)dv(x,r?,,) 61)

a=l
The discrete approximation of Eq. (59) for the field yis given by an analogous expression. Using a
random number generator, sets of ¥, and dv(x,k,) can be generated that yield realisations of the

field p that satisfy two conditions: i) & must be real, and ii) the correlation function < u(7 +5)u(7) >
must be equal to a given function B,(s). The first condition is satisfied by replacing each pair
K,,dv(x,k,) by two pairs: X, ,3dv(x,k,) and —X,,4dv*(x,~X,) . The second condition requires a

distinction between three-dimensional fields and two-dimensional fields (two-dimensional fields are
used for axisymmetric systems; see above).

B.2.a. Three-dimensional fields
Three-dimensional fields y(x,y,z) are obtained with the following expressions:

K, = (K Ky ) = (K, COSQ, SiNG,, K, Sing, Sin6,, K, cos6,) (62)
dv(x,k,) = 1/87L'Ai<1’<!>‘,l(rc,,) K, exp{iX,  x+ia,) (63)

where x;, =1 I?u I=n Ax, ¢, and @, are random angles between 0 and 21, cos6, a random number
between 1 and -1, and @, () the three-dimensional spectral density of 1. We have K, =(x,,.,k,,) in

Eq. (61), so that K,.p=x,,y + X,z . The numerical examples presented in Section IV.D are for a
Gaussian correlation function B, (s) = /.102 exp(—s® / a?), corresponding with a Gaussian spectral
density @, (x) = py’a’ exp(~x?a® /4) /872 . For this case, we use Ax=0.1/a and N = 80.

To prove that this yields the correct correlation function B,(s), we write the spectral
decomposition of B,(s) as follows (valid for homogeneous, isotropic random fields p):

341
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0 o oo £ 2ze0 .
B,(s)= j j _[ cos(R.5)®,, (x)dR = j j J‘ cos(R.5)®,,(x)xdx sin8dGdg = < J' cos(R.5)®, (x)x3dx >
—ao—co—se 000 0
(64)
where angular brackets denote averaging over the angles §and ¢. The integral is approximated by a
finite sum:

B (s)=<4rn Achos(I?n..'s')tb MR (65)

The same result is obtained from Egs. (61) and (63):
SUF+3U(F)>=< 87:sz1/¢“(x,,) X, cos(l?,,.?-l-a,, + I?,,.E)ZJ(D,,(K,,) K cos(f(,,,.?-i-a,,,) >(66)

Here we have used the condition that z must be real. Now the averaged products

cos(K,.7 +a, + K,.5)cos(K,,.F +@,,) vanish unless n = m. We have, using the goniometric
relations cos’x = T+ cos2x and sinx cosx = & sin2x:

<cos(K,.F +a, + K, .5)cos(K,.7 +a,)>=

<cos’(K,.7 +a,)cos(K,.5) > —<sin(K, .7 + a,)cos(K, .7 +a,)cos(K,.5) >="Lcos(K,.5)
This gives Eq. (65), which completes the proof.

(67)

B.2.b. Two-dimensional fields

Two-dimensional fields y(x, z) can be deduced from three-dimensional fields ux, y, z), but
are obtained more efficiently with the following expressions:

K, = (% %) = (K, cOsy, K, sing,) (68)
dv(x,R,) = Jar Axc [F, (x, )X, expliK,.x+iat,) (69)

where k, =1K,1=n Ax, ¢, and @;, are random angles between 0 and 21, and F,u(x) is the
two-dimensional spectral density of u. We have &, =« ,, in Eq. (61), so that &,.p = Kn2.Fora
Gaussian correlation function B, (s) = y°2 exp(~s®/a?), corresponding with a Gaussian spectral
density F,(x)= po’a® exp(~x2a® 14)/4x , we use Arc=0.1/a and N = 60.

The proof that this yields the correct correlation function By(s), is anélogous to the
three-dimensional case. We approximate the spectral decomposition of By(s) as follows:

By(s)= [ [costR.)F, )R = <22 &K Y cos(R, . 5)F, 0, )x, > (70)

where angular brackets denote averaging over the angle ¢. The same result is obtained from Egs. (61)
and (69). _
IV.C. Computational method 3: Monte Carlo evaluation of Rytov solution for system with
ground surface

Rytov’s solution (59) for an unbounded system is of the same form as the solution (39) in
Section II1.C for a system with a ground surface. Therefore, the approach described in the previous-
section can also be applied to the rigorous solution (39). The fluctuating variables y; and y5 in Eq. (2)
now correspond with the receiver at height z; = z, and the image receiver at height 2, = -z,,
respectively. The solution (39) takes into account the symmetry of the turbulent atmosphere with
respect to the ground surface at z=0.
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IV.D. Numerical examples
In this section, results are presented of computations performed with the methods described in
the foregoing. All results are for a Gaussian correlation function of the fluctuating index of refraction

B,(s) =y’ exp(~s® /a*), witha= 1.1 mand pt’ = 10°* (see Refs. 6, 8). Before presenting examples

for systems with a ground surface (Section D.2), we first investigate the accuracy of the assumption of
Gaussian distributions in computational method 1 (Section D.1).

D.1. Distributions of ¥ and S for an unbounded system

Computational method 1 is based on the assumption of Gaussian distributions for the phase
and log-amplitude fluctuations of spherical waves in a turbulent atmosphere. We can use
computational method 2 to investigate the accuracy of this assumption. Therefore we consider an
unbounded system, and compute Monte Carlo realisations of the fluctuating variable y at a single
receiver (instead of two receivers for a system with a ground surface). From the values of y we obtain
values of the phase S and the log-amplitude y. A number of 2000 Monte Carlo realisations was used
for each computation.

First we consider the variances <S> and <x*>. Figure 4 shows the variances as a function of
range L for axisymmetric turbulence, for the frequencies 125, 250, 500 and 1000 Hz. The lines
represent the analytic solutions which are used in method 1, the circles represent method 2. We also
included results of the parabolic equation (PE) method, both the Crank-Nicholson PE (CNPE)
method"*?° and the Green’s function PE (GFPE) method.*? Details of the PE computations are given
below. Figure 5 is as Fig. 4, but for isotropic turbulence. The agreement between the different
computational methods is good, although for frequency 125 Hz the PE results in Fig. 4 deviate
slightly from the analytic results. The maximum range in the figures is L = 40 m, and the largest
variances occur for frequency 1000 Hz, <§% = 0.2 and <¢*> = 0.05. This means that the turbulence
may be considered as weak.

Figure 6 shows the probability density distributions of the phase fluctuation S and the
log-amplitude fluctuation y for range L = 40 m, for axisymmetric turbulence. We also included PE
results. Figure 7 is as Fig. 6, but for isotropic turbulence. The circles represent computational method
2, the lines represent corresponding Gaussian distributions (with standard deviations computed from
the variances). Figures 6 and 7 show that the distribution of the phase fluctuations is Gaussian in good
approximation, while the distribution of the log-amplitude fluctuations deviates from a Gaussian at
high frequency.

We now give details of the PE computations. For the CNPE computations we used a grid
spacing of 0.14 (4 is the wavelength) and system heights of 2000, 2500, 4000 and 8000 grid spacings
for the four frequencies, respectively, including an absorbing top layer of 500 grid spacings to
eliminate spurious reflections from the top surface. We used a CNPE code for systems with a ground
surface, but we used a source height of 125 m and a receiver height of 125 m, so that the ground effect
was negligible for propagation over a distance of 40 m. For the GFPE computations we used a vertical
grid spacing of 0.12 and a horizontal range step of 1 m. The system heights were N = 2048, 4096,
8192 and 8192 grid spacings for the four frequencies, respectively. We used a GFPE code for systems
without a ground surface; the periodicity of the FFT algorithm implies that the system is in fact an
infinite vertical sequence of periodic images of height N. The values of N are large enough to ensure
that the effect of periodic images of the source is negligible for propagation over a distance of 40 m.
Each CNPE or GFPE result was obtained from a set of 500 propagation runs for different random
realisations of the turbulent atmosphere.
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D.2. Distributions of the relative sound pressure level for a system with a ground surface

Next we present examples of fluctuations of the relative sound pressure level, for a system
with a ground surface.

Figure 8 shows the quantities <AL>, AL, and AL_ (see Section IV.A) as a function of range L
for axisymmetric turbulence, for four situations: (f, z) = (250, 3), (500, 2.4), (1000, 1.5) and
(2000, 0.9), where fis the frequency (in Hz) and z, is the source height (in m). We used equal source
height and receiver height, i.e., z, = z. The curves represent computational method 1 (using
Noangom = 50 000, see Section IV.A.2), the symbols represent CNPE results. For comparison, we also
computed the curves for isotropic turbulence; we found that the deviations from the curves for
axisymmetric turbulence shown in Fig. 8 are very small. For the CNPE computations we used a grid
spacing of 0.14 and a system height of 2000 grid spacings, including an absorbing top layer of
1000 grid spacings to eliminate spurious reflections from the top surface. The CNPE results were
obtained by averaging over 500 random realisations of the turbulent atmosphere.

Figure 9 shows the probability density distribution of the relative sound pressure level at
frequency 1000 Hz and range L=40m (forz,=1.5mand z,= 1.5 m), for axisymmetric turbulence.
Figure 10 is as Fig. 9, but for isotropic turbulence (except for the PE results, which are always for
axisymmetric turbulence). These two figures contain results of four computational methods: CNPE
and computational methods 1, 2 and 3. Values of <AL>, ¢, and ¢_ are given in the legends. Method 3
gives a smaller value for _ than the methods 1 and 2 do. The smaller value from method 3 is
confirmed by the PE result.

Figure 11 provides evidence for the saturation of log-amplitude fluctuations.?? The figure
shows the quantities <AL>, AL, and AL_ as a function of range L, for axisymmetric turbulence,
f=2000 Hz, z,= 10 m and z, = 10 m. The symbols represent CNPE results (based on 350 random
realisations of the turbulent atmosphere; a grid spacing of 0.02 m was used and a system height of
80 m). The lines represent computational method 1 (using Neagom = 50 000) including a saturation
Oy S Ogmax (i-€., When Oy > Oy, Oy is set equal to Gyma). The five graphs in Fig. 11 are for five
different values of Oymx. The agreement with the PE results is best for Oymax = 0.5, or d',,,.,.,,‘2 =0.25.
This value is of the same order as the upper limit of the weak-turbulence region Gym’ = 0.2 - 0.5
given in Refs. [2,4]. Brownlee? predicted saturation at o;,,,,.,‘2 =0.27.

It should be noted that our estimate of the saturation value Gyma” = 0.25 might be affected by
the fact that computational method 1 overestimates the fluctuations of the relative sound pressure
level, at least for weak turbulence (see Fig. 9). It should be noted further that the most direct PE
approach to observe the saturation would be to simulate propagation in an unbounded system, by
using a system with source and receiver well above the ground surface (as in Section D.1, but for
larger range and/or higher frequency). The numerical effort for this approach was too large.

IV.E. Concluding remarks

Method 1 for computing statistical distributions of the sound pressure level appears
sufficiently accurate for most practical applications. If a higher accuracy is required, method 2 or
preferably method 3 may be used, but these methods require a larger numerical effort. All three
methods are limited to weak turbulence, but the range of validity may be extended simply by limiting
the variance <x*> to a saturation value of about 0.25 (note that this limitation should also be applied
in the coherence factor described in Section III). Further, all three methods are restricted to
non-refracting atmospheres. An extension of this work to downward refracting atmospheres will be
the subject of future work.
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APPENDIX A. Isotropic and axisymmetric turbulence
The fluctuating field u(F) is represented by the following stochastic Fourier-Stieltjes

integral:'%*

p(F):jexp(u?.F)dv(l?) (A1)
with K = (x..,x,,k,) and random amplitudes dv that satisfy the relations
<dv(K)>=0, <dv(K)dv*(K')>=®,(K)8(K - K')dRdK' (A2)

where & is the Dirac delta function and the function & u (K) is the three-dimensional spectral density
of the function u(7) . The correlation function of u(7) is:

B, (F)= < MRIU*F)>= [ @, (R)e™"dk (A3)

with 7 =7, =1, . The inverse Fourier transform is:



@, (B)=0m)> j B, (Fe"® dF (Ad)
An example is the Gaussian correlation function
2
B, (r)=H," exp(- -r—z) (AS)
a
with g the standard deviation of z and a the correlation length, with Gaussian spectral density:
3 2 2
a K‘a
@, () =4 25 K= (A6)

where x=1Ki.
The fluctuating field u(F) can also be represented by a two-dimensional stochastic
Fourier-Stieltjes integral:

K(F) = [expliR.B)dv(x.K) (A7)
with p =(y,z) and random amplitudes dv that satisfy the relations
<dv(x,©)>=0, <dv(x',K)dv*(x",K')>= F,(x,K)8(K-K")dK di' (A8)
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where x=x"-x", K=(x y0K,) and F(x, i) is the two-dimensional spectral density of the function

U(F) . The correlation function becomes:

B,(x,p)= j F,(x,)e*Pdk (A9)
The inverse Fourier transform is:
F,(x,®)=(2n)™ [ B,(x.p)e™*Pdp (A10)
An example is the Gaussian correlation function
2 2
B, (x.p) =" exp(= 2 exp(-£5) (A11)
a a
with spectral density:
2 2 K2 2
F,(x,6) = gty Zexp(-Z5) exp(-——) (A12)
4r a
Equations (A4) and (A10) give the following two relations:
Fu(x,8)= [ @, (R explix, x)dx, (A13)
@, (K) = @m)" [ F,(x,R)exp(-ix , x)dx (A14)
Choosing x; = 0 we obtain the relation:
@, (%)= 2m)" [ F,(xR)dx (A15)

which is used in the derivation of the phase and log-amplitude correlation functions.

1. 3d-isotropic field u
If u(7) is homogeneous and isotropic in three dimensions, Eq. (A4) implies

®,(K)=®,(K1) and Eq. (A10) implies F, (x,&)= F,(Ixl,I%1).
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2. 2d-isotropic field u
If u(r) is independent of y and homogeneous and isotropic in the xz plane, then

B,=B, (Vx? +2%) . This type of turbulent fields are used in computational methods (such as the PE
method) based on the axisymmetric approximation. In this case Eq. (A4) gives:
@, (B)=2m)™ J’ J' B, (Vx* + 2% ) exp(~i[x ,x + x ,2))dxdz (7)™ j exp(~ix,y)dy  (Al6)

which can be written as:
O, (R)y=F,(Jx,  +x,%) 8(x,) (A17)
with Fi() = F(x=0,%). Equation (A10) gives:
Fu(x.8)=2m)7 [ B, (V3 + 22)exp(~ix, 2)dz (2m)" [exp(-ix, y)dy (A18)
Comparison of Eqgs. (A16) and (A18) yields Eq. (A14).

APPENDIX B. The functions F( B9 and I(g,8,7)
We define the function F(a;8,%) as follows:

F(@,B.7)= [ Jo(ax)cos(Br?) exp(~p* e
0

- (B1)
=Re j Jo(ax) exp(~yx? +iBrc? )idx
0

27
Using the relation J,(ax) = (27)™! _‘;exp(i Ka cos8)d6 , we obtain:
©2r
F(a,B,7)= 2lﬂke_[ J'exp(zaxcose) exp(—yx? +iBx? dxdd
.- ®2)
1 . R .
= 2_7zRe '[ Jexp(lax »)exp(=rx,? +ifx *)exp(~yx 2 +ifx *)dx dx,

where a transformation (x,6) — (%, k) has been applied. The integral over K; yields a factor
Jr 1 ¥ =iB , and with the notation x= K, we obtain:

xpiBx’) o

F(a,B,y)= J—I;I cos(ax)exp(-yx?)Re e}'ﬁ (B3)
0

Using (y —if) ™ = (y* + B*)™ exp[Liarctan(B / 7)], we obtain;
2

1 B .
F(a,B,7)= W ! cos(ax) exp(~yc?) cos( aretan’ "+ Br?)dx B4)

We define the function G(a, 8,%6) as follows:

G(a,B,7,6) = j cos(ax)cos(Bx? + 8) exp(~yx? )dx
°. (BS)
=1Re j exp[-(¥ —iB)x? +iax + idldx

—-

With the substitution z= x,/}' - i3 we obtain:
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Jr [ [ o’ : ] ]
G(a, B,7,8) = ——==——=Re| exp ~—————(y +if) +i6 [\fy + 6
(,B,7,6) m T o iB)+id6 [y +ip (B6)

Using (y +iB)"? = (y?* + B*)""* exp[Liarctan(8/ y)], we obtain:

2 2
G(a,ﬁ,7,8)=2(7‘[£ exp(— 2y )co(zarctanﬁ 28 .5 @

Yk ar’+ % Y 4r*+B%)
Equations (B4) and (B5) give the relation
B
F(a,B,7)= G(a,pB,7,6 =Larctan— (B®)
B~ Ty
which yields, with the notation D=7 + 82:
2 2ﬁ ﬁ g
F(a,B,7)= Eexp —E ¥ cos—— D +ﬁs1n D (B9)

where the relations cos(arctan 8/7)=7//y* +B? and sin(arctan /)= B/ J7?+B* have been
used. We define the function /(¢ B,7) = G( ¢, B,7%6=0). Using the relations cos$¢ = ,/— ++cos¢ and

siny¢= .‘H---;- cos¢ , we obtain:

I(a,B,)= 3’2D'“ xp( 2D ]( ’l+ cos—+ ’1———sm ] (B10)

APPENDIX C. The Fresnel integrals and related integrals

2 z
The Fresnel integrals are C(z) = Icos(%tz)dt and S(2)= Jsin(%rz )dt . We have
0 )

C(0) = S(=) =% and C(~z)=-C(z) and S(~z)=-S(z) . The following relation is easily obtained:

:[exp(iwz)dw=J-§[C(z\/%)+iS[zE]:| 1)

from which the following relation is obtained:

‘.!zexp(iv.:2 )dw= ‘/%(l + i)%{l -Q1- z)[C(zE] +iS(zJ;2:-]]} (C2)

Using the algebraic equation:

\ b ¥ »
aw® +bw=|Jaw+——| - — C3) .,
( 2Ja ) 4a ©)
the following relations are easily derived:
2
jexp(z[aw +bw])dw= (1 +i) exp(—x b—) (C4)

j exp(ilaw? +bw])dw—J— (l+t)exp(-l—) {1 (I-x)[C( \/_ J+zs(v —)]} (C5)

with v_uf+-;-b/J'.
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Influence of Atmospheric Turbulence on Sound
Reduction by a Thin, Hard Screen: A Parameter
Study Using the Sound Scattering Cross-section

Jens Forssén

Dept. of Applied Acoustics, Chalmers University of Technology, Géteborg, S-41296,
Sweden. Tel +46 31 7722196. Fax +46 31 7722212, E-mail jf@ta.chalmers.se

Summary

A prediction scheme is presented that uses a small number of pre-calculated data
to predict the energy scattered by the turbulence and the diffracted energy for a
large variety of situations with a thin, hard screen in the absence of a ground
surface. This is done by applying transformations for variations in frequency and
in geometrical scale, for both the scattered and the diffracted energies.

The influence of the turbulence scattering on the sound reduction by a screen
is shown to grow when the geometry is increased in scale or when the frequency is
increased. Moreover, the influence of the scattering grows when the screen-
receiver distance is increased, and the weak scattering at angles near 90° leads to a
dip in the influence of the scattering when the screen height is increased.

An example calculated for one geometry and with a typical traffic noise
spectrum as input shows that taking onto account atmospheric turbulence can
significantly reduce the performance of a noise barrier, not only at high
frequencies, but also when measured in dB(A).

A three-dimensional integration of the scattered energy is shown to be
simplified by an analytical integration in one dimension, which makes the
numerical solution far quicker.

1. Introduction :
To correctly predict the sound reduction by a noise barrier in an outdoor
environment, the fact that the atmosphere is never homogeneous cannot be
ignored. Wind and temperature gradients cause curved ray paths and the
atmospheric turbulence causes scattering and decorrelation of the sound waves.
The scattering has been shown to cause an increased sound energy in the acoustic
shadow formed by upward refraction (e.g. [1]). In a similar way the scattering
reduces the performance of a noise barrier [2, 3]. Especially for high frequencies
and large scale geometries, the turbulence scattering will significantly influence



the sound reduction by a noise barrier. A situation of interest with a large scale
geometry is when using large buildings as road traffic noise barriers.

For predicting the effects of a turbulent atmosphere on sound reduction by a
thin, hard screen, a model developed by Daigle [2] is used. In the model the
energy scattered by the turbulence is calculated using the sound scattering cross-
section by Tatarskii [4] and then added to the diffracted energy in the shadow of
the screen. With this model Daigle investigated five different geometries and the
predictions were compared with measured data [2]. The comparison showed a
fairly good agreement between predictions and measurements, and that
neglecting the turbulence scattering would yield a poor prediction, especially at
higher frequencies.

To determine when the atmospheric turbulence significantly influences the
sound reduction by a screen, a large set of situations need to be investigated, i.e.
many parameters need to be varied. The model used does allow the results
predicted for one situation to be straight forwardly transformed to other situations
and thereby the number of parameters used in the calculations can be reduced.
Using the physically based Kolmogorov spectrum for the representation of the
turbulence allows a straight forward transformation of the results for one
frequency to other frequencies. In this study no ground effects are taken into
account, leading to a straight forward frequency dependence of the diffraction as
well. Moreover, the results when enlarging or diminishing the geometry in scale
can also be predicted using straight forward transformations, both for the
scattering and the diffraction. Considering all these transformation properties of
the model, the predictions of the scattering and the diffraction for all situations of
interest can be compactly presented as a small amount of data, as shown in the
following.

When omitting the ground surface in the predictions the barrier insertion loss
will in general be overestimated. For instance, if the receiver is placed on a hard
ground, the overestimation will be 6 dB (the scattered level relative to the
diffracted field will, however, be the same). If the receiver is placed above the
ground, the insertion loss will be more difficult to predict since it will be
determined by the interference between direct and ground reflected waves. For
high enough frequencies, however, the direct and ground reflected waves, from
both diffraction and scattering, will add energy wise, since the waves will be
uncorrelated due to the randomness of the medium as well as of the ground
surface. Then, the insertion loss will be overestimated by about 3 dB for an
elevated receiver, and the scattered level relative to the diffracted field will be the
same as without ground.

For future work a model similar to the one used here can be developed to take
into account a finite impedance ground surface, thick barriers of finite length, a
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non-constant sound speed profile, and locally homogeneous turbulence. More-
over, it should be possible to include the decorrelation between a direct and a
ground reflected wave that is due to the atmospheric turbulence.

2. Theory

The acoustic energy scattered into the shadow of the screen is calculated using the
sound scattering cross-section by Tatarskii [4]. The diffracted energy is calculated
separately and then added to the scattered energy, according to the model
developed by Daigle [2].

2.1 Diffraction

The diffraction is calculated for a thin, hard screen using uniform theory of
diffraction [5, 6]. When no ground is present the diffracted energy is inversely
proportional to the frequency. Analogously, if the geometry is increased in scale,
by some scaling factor, the diffracted energy relative to free field is inversely
proportional to the scaling factor.

The main restriction of the uniform theory of diffraction is that it is only
applicable when the source and receiver are located more than a quarter of a
wavelength away from the screen [7]. For a more extensive description of the
uniform theory of diffraction, see e.g. [5].

2.2 Sound scattering cross-section

The sound scattering cross-section is a single scattering approximation where the
field incident on a scattering object is assumed to be well approximated by the
field calculated for a non-turbulent atmosphere. The energy scattered from each
object will be added to the total field and thus the model is not energy conserving.
This means that it is restricted to small perturbations of the sound field, which
implicates that the propagation distance cannot be too large. Also the fluctuations
of the medium have to be small, so that the acoustic field inside a scattering object
can be approximated by the incident field, i.e. the Born approximation.

The atmospheric turbulence is approximated as homogeneous and isotropic,
which means that it is described by the same statistics in all points and in all
directions.

Furthermore a far field condition has to be fulfilled,

p>>L[A 0y

where / is the correlation length of the turbulence (about 1 m), A the acoustic
wavelength, and p the distance from a scattering elementary volume to the
receiver (see Figure 1). Condition (1) justifies an uncorrelated summation of the
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contribution from different elementary scattering volumes and the total received
scattered energy can be written as [2]

E; =jpg$f)dr/, 2
A

where p, is the amplitude of the incident pressure, o(6) the scattering cross-
section, and @ the scattering angle. The volume of integration V consists of all
points in line of sight from both source and receiver (i.e. the striped area in

Figure 1).
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Figure 1. Geometry for the sound scattering cross-section.

Following Tatarskii [4, p. 160] the scattering cross-section is written

4

o(6) = % cos?6 g(zﬁ + L?(')cos2 o1, 3)
2 I o 2

where ®(x) and F(x) are the spectral densities of the temperature and the wind

velocity fluctuations respectively, T, the mean temperature, ¢, the mean sound

velocity, and x the wave number of the turbulence, fulfilling the Bragg condition
K =2ksin2 @

It can be noted in equation (3) that for right angles cos’6 =0, and the scattering
cross-section will be zero.

The incident pressure p, in equation (2) is calculated without taking into
account the field diffracted by the screen. This will lead to an overestimation of the
scattered energy since the strongest scattering will come from parts of the
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scattering volume that are near the shadow boundary, where the incident pressure
is weakened by diffraction. A more accurate prediction of the scattered energy can
be obtained by considering the diffracted field in the entire scattering volume.

Equation (2) describes the time average of the energy scattered by the
turbulence. The turbulence can be seen as a composition of Bragg planes with
separation distance 2x/k causing scattering of energy proportional to the spectral
density at x.

According to this model the scattered energy will, relative to free field, change
with the same factor as the geometry is scaled. To see this let the height of the
screen, as well as its distance from source and receiver, be doubled. Substituting
for these new variables in the integral (2) will cause an increase by a factor eight in
dV and a factor four in p?, whereas p? will stay constant relative to free field. As a
result the scattered energy will be doubled, i.e. increased by 3 dB, relative to free
field. This dependence of the scattered energy on the scaling of the geometry is,
due to the single scattering approximation, restricted to short ranges, as stated
above. It is, however, assumed here that, for frequencies of interest for road traffic
noise situations, the single scattering approximation is realistic up to at least a few
hundred meters in range. Measurements or further theoretical work is needed to
confirm the validity of this assumption.

Both ®(x) and F(x) in equation (3) are assumed to be described by the
Kolmogorov spectrum (see Figure 2), with amplitudes C? and C? respectively.

A

. [ source: inertial dissipation
B |mnge range
;‘_-;. .
E
(]
£
=
(]
o
Q.
w
AN
: i\
2n Ly 2r lp K

Figure 2. Kolmogorov spectrum of the turbulence.
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In the inertial range, where the spectrum amplitude is proportional to k™", the
scattering cross-section can be written as

20 c¢: ¢ 0
6(0) =038k —52 2 101330 4+ S 022, 5
© 2sin@2)"| T @ 2 ©)

Invequation (5) it can be seen that the scattered energy changes with frequency as
.

The strength of the turbulence in the source range, i.e. for x <2x/I,, will
depend on the large structures of the terrain and is not easily determined. In this
study the spectrum amplitude in the source range is assumed to be constant, at a
value equal to the amplitude at k =27/, for the inertial range. When calculating
the integral (2) the constant value of the spectrum in the source range has to be
considered if the scattering angle theta is small or if the frequency is low,
according to the Bragg condition (4). This leads to that only in the situations when
a negligible part of the scattered energy comes from the source range can the
straight forward frequency scaling according to equation (5) be applied.

The value of I, is as small as 1-2 mm and therefore the dissipation range will
not be of importance in the audio range.

2.3 Implementation

When calculating the integral (2) numerically, the volume of integration V is
increased until further contribution to the scattered energy is negligible. For flat
geometries, i.e. when the source and receiver are located far away from a low
screen, a sufficient volume of integration is from the source to the receiver about L
high and 2L wide, where L is the distance between the source and receiver.
However, for less flat geometries there will be significant back scattering, i.e.
scattering at angles greater than 90°, and then the volume of integration has to be
increased. '

The integral (2) can be solved analytically in one dimension by taking
advantage of the angle dependence of the integrand, as shown in Appendix 1. This
makes the numerical solution far quicker.
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3. Results

In the calculations the values of the parameters for the strength of the turbulence
are chosen with guidance from Daigle’s measurements [2] so as to represent a
strong but not unrealistically strong turbulence: C? =1, C} =10,and [, = 1.1 m.

In the first subsection the general results are presented and in the second
subsection the influence on a typical road traffic noise spectrum is calculated for
one geometry.

3.1 General results

The results are presented in two sets of tables. The variables are the screen height
H and the screen-receiver distance x,, in meters. Each set of tables consists of one
table with the diffracted level relative to free field L,, and one table with the
scattered level relative to the diffracted field ALy, . The results are presented for the
frequency f, = 2000 Hz, and for a distance x,=40m from the source to the
screen. The first set of tables (Tables 1 and 2) describes the situation where the
receiver is on the same height as the source (see Figure 3). The second set of tables
(Tables 3 and 4) describes the situation where the receiver is half the screen height
above the source (see Figure 4).

The results can be transformed for another value of the frequency f or of the
source-screen distance x,. If x, is changed, the tabulated results at the screen
height H-x,/x, and at the screen-receiver distance x,-x,/x, should be used.
Then, to the results for the scattering 10- log(x,/x,,) is added, and to the results for
the diffraction 10-log(x,/x,) is subtracted. For a change in frequency
10/3-log(f/ ;) is added to the scattered level and 10-log(f/f;) is subtracted from
the diffracted level. Hence, the scattered level relative to the diffracted field will
increase by 6 dB if the geometry is enlarged in scale by a factor two. For a doubling
of frequency the increase will be 4 dB. The resulting levels using the above
transformations can also be formulated as

ALg = ALy, +10-log(x,/x,)+10/3-log(f/ £;) (6)
and
L, =Ly, —10-log(x,/x4)—10-log(f/f;) . 7)

where AL is the scattered level relative to the diffracted field and L, the
diffracted level relative to free field. The total level L, ¢ can then be written

Lp.s =10-log(10%/ + 1+ )
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Figure 3. Geometry with the receiver at the same height as the source.
x,=10 20 30 40 50 60 70 80 920 100
H= -26.4 -25.0 -24.2 -23.7 -23.3 -23.0 -22.8 -22.6 -22.5 -224
10 -31.1 -30.0 -29.3 -28.9 -286 | -28.3 -28.1 -28.0 -27.9 -27.8
15 =339 -32.9 =323 -31.8 -31.5 -31.3 -31.1 -31.0 -30.8 -30.7
20 -36.1 -35.1 -344 | -339 -336 | -334 -33.2 -33.0 -32.9 -32.8
25 -38.0 -36.9 -36.1 -35.6 -35.3 -35.0 -34.8 -34.6 -34.5 -34.3
30 -39.6 -38.5 -37.6 -37.1 -36.7 -364 -36.1 -35.9 -35.8 -35.6
35 -41.1 -39.9 -390 | -384 -379 | -376 -37.3 -37.1 -36.9 -36.7
40 -42.5 -41.2 -40.2 -39.5 -39.0 -38.6 -38.3 -38.1 =379 -37.7
Table 1. Diffracted level relative to free field, L, (dB), at the same height as the source.
x,=10 20 30 40 50 60 70 80 90 100
H= -7.1 -3.0 -0.6 1.0 22 3.1 39 4.5 5.1 5.6
10 -6.3 -4.4 -2.5 -0.9 04 14 23 30 3.7 42
15 5.0 -3.8 -2.6 -1.5 -0.5 04 1.2 1.9 26 3.1
20 -4.1 <29 -2.0 -1.1 -0.4 0.3 1.0 1.6 2.1 2.6
25 -34 -2.1 -1.2 0.5 0.1 0.7 1.3 1.8 23 2.7
30 -2.9 -1.6 -0.6 0.1 0.7 1.3 1.8 2.2 2.7 3.1
35 2.5 -1.2 -0.2 0.6 1.2 1.8 23 2.7 3.1 3.5
40 2.2 -0.8 0.2 1.0 1.7 22 2.7 3.1 3.5 3.9

Table 2. Scattered level relative to the diffracted field, AL;, (dB), at the same height as the source.
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Figure 4. Geometry with the receiver half the screen height above the source.
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x,=10 20 30 40 50 60 70 80 92 100

H=5 -22.7 -21.9 -21.6 <214 -21.3 -21.2 -21.2 -21.2 -21.2 =211
10 -27.7 -27.1 -26.9 -26.7 -26.7 -26.6 -26.6 -26.6 -26.6 -26.6
1§ -30.5 -30.0 -29.8 -29.7 -29.6 -29.6 ~29.6 -29.6 -29.6 -29.6
20 -32.5 -32.1 -31.9 -31.8 -31.7 -31.7 -31.6 -31.6 -31.6 -31.6
25 -34.2 -33.7 -33.5 -33.3 -33.3 -33.2 -33.2 -33.2 -33.1 -33.1
30 -35.6 -35.1 -34.8 -34.6 -34.5 -34.5 -34.4 -344 -34.4 -344
35 -36.9 -36.3 -35.9 -35.7 -35.6 -35.6 -35.5 -35.5 -35.4 -35.4
40 -38.0 -37.3 -37.0 -36.7 -36.6 -36.5 -36.4 -36.4 -36.3 -36.3

Table 3. Diffracted level relative to free field, L, (dB), at half the screen height above the source.

x,=10 20 30 40 50 60 70 80 90 100
H= -6.0 -2.0 0.1 1.5 2.6 34 4.1 4.7 53 5.7
10 <13 -3.8 -1.6 -0.0 1.2 2.1 29 3.6 4.1 4.7
15 -6.6 4.5 -2.6 -1.1 0.0 1.0 1.8 25 3.1 3.6
20 -5.9 -4.1 2.7 -1.5 -0.4 0.4 1.2 1.8 24 2.9
25 -4.9 -3.4 -2.3 -1.3 -0.4 04 1.1 1.7 22 2.7
30 4.3 -2.8 -1.7 -0.8 -0.0 0.7 L3 1.9 24 2.8
35 -3.8 -2.3 -1.2 -0.3 04 1.1 1.6 2.2 2.7 3.1
40 -3.4 -1.9 -0.8 0.1 0.8 1.5 2.0 2.5 3.0 34

Table 4. Scattered level relative to the diffracted field, AL, (dB), at half the screen height above the source.

From the tabulated results it can be seen that the influence of the scattering grows
when the distance from the screen to the receiver x, is increased. When the screen
height H is increased, it can be seen that the influence of the scattering first
decreases and then increases, which is due to the weak scattering near 90°. Hence,
when the screen height is large, the dominating scattering is at angles larger than
90°. When the screen height is further increased, also the influence of the scattering
will increase. This dependence would be different for other spectral densities of
the turbulence. For instance, a Gaussian spectral density would lead to a faster
decrease of the scattered energy relative to free field when the height of a high
screen is further increased.

As already discussed above, the transformation of the scattered level when.
changing the frequency is only valid within the inertial range of the turbulence
spectrum. To get a rough estimate of when this transformation is valid one can use
the Bragg condition (4) for the smallest scattering angle (i.. at the screen edge) and
thereby find a lower frequency limit. For example, if the receiver is half the screen
height above the source (see Figure 4) and if H =10 m and x, = 100 m, the smallest
scattering angle is about 17°. Inserting = 17°, x =2rn/l,, and k=2af/c in the
Bragg condition (4) leads to a lower frequency limit f =c/(2L,sin£) =1050 Hz,
with ¢ =340 m/s. For even lower frequencies the scattering will be overestimated



using this prediction scheme. For many situations, however, the dominating

scattering will be produced at higher frequencies, and the contribution at low
frequencies can be omitted.

3.2 Influence on road traffic noise

The geometry in the example above, with H=10m, x, =100 m, x, =40 m, and
with the receiver half the screen height above the source, can be seen as a model
for a building along the road side (see Figure 4). The tabulated results, for this
geometry and the frequency f, = 2000 Hz, are L,,, =-26.6 dB and AL, = 4.7 dB. By
applying the formulas (6-8) for transformation of the results to other frequencies,
the influence on a traffic noise spectrum can be estimated for the geometry. For
this example a reference traffic noise spectrum according to ISO 717-1:1886(E) is
used (see Figure 5). The spectrum is for a car speed of 90 km/h and has been
normalised to 0 dB(A). Not to overestimate the scattering at low frequencies, the
scattered energy is assumed to be zero up to the third octave band 800 Hz.

0
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Figure 5. A-weighted reference traffic noise spectrum in third octave bands, normalised to 0 dB(A).

The resulting spectra for the diffraction L, and for the total level, including the
scattering by the turbulence, L,,; are shown in Figure 6. The diffracted level is
about -22 dB(A), and it can also be seen that the screen causes an increased
influence of the low frequency components of the traffic noise. (It can be noted
again that, for a hard ground surface directly beneath the receiver, the sound
reduction by the barrier would decrease by 6 dB, i.e. from -22 dB(A) to -16 dB(A).)
The difference between the total level L, and the diffracted level L, show, at the
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Abstract

The equation for the sound scattering cross-section, o, in a tur-
bulent atmosphere is well known in the literature for the case when
the mean temperature is constant and the mean wind velocity is zero.
This equation is a theoretical basis for acoustic remote sensing of the
atmosphere, and has other important applications, for example, in
studying sound scattering into refractive shadow zones and in noise
reduction by barriers. In this paper, the equation for o is general-
ized for the case of sound scattering in a realistic stratified moving
atmosphere with vertical profiles of temperature and wind velocity.
It is shown that the differences in temperature and wind velocity be-
tween the height of the scattering and the source-receiver height can
significantly affect o for the scattering angles close to 90° and 180°.
The derived equation for o is compared with those obtained by Clif-
ford and Brown (1] and by Ye [2] for a model of a stratified moving
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atmosphere as two homogeneous layers in relative motion. It is also
explained why the equation for o derived by Clifford and Brown is
different from that derived by Ye.

1 Introduction

The sound scattering cross-section per unit volume, o, is one of the most
important statistical characteristics of a sound wave scattered by atmospheric
turbulence. Suppose that a sound wave propagating in the direction of the
unit vector ny is incident on a volume V' containing random inhomogeneities
(Fig. 1). Then o is proportional to the mean intensity (I,) of the wave
scattered in the direction of the unit vector n,: o (n, — ng) = (I,) R%/(L,V).
Here, Iy is the intensity of the incident wave, and R is the distance from
the scattering volume to the point of observation. The angle © between the
vectors n; and ng is called the scattering angle. The equation for ¢ is a
theoretical basis for acoustic sounding of the atmosphere by sodars, and is
also important for many other problems, e.g. sound scattering into a shadow
zone.

An equation for o was derived in 1961 by Monin [3] for the case of the
Kolmogorov spectrum of temperature and wind velocity fluctuations:

kPcos?® [CE 22cos? (6/2)C2

cn@©/2) RT3 & M

Here, kq is the sound wavenumber, CZ and C? are the structure parameters of
temperature and wind velocity fluctuations respectively, Tj is the mean tem-
perature, and ¢, is the mean value of the adiabatic sound speed. The cross-
section o can be represented as a sum of two terms, o (9) = or () + 0, (0),
where or and o, are the contributions to ¢ due to sound scattering by
temperature and wind velocity fluctuations, respectively. = The tempera-
ture contribution to the sound scattering cross-section, or (©), normalized
to 1.45 x 10~2ky/3C2 /T2, and the wind velocity contribution, o, (©), normal-
ized to 5.33 x 10~2ks/3C2/c2, are plotted in Fig. 2 verses the scattering angle
©. or and o, have different dependences on ©. In particular, for the im-
portant case of backscattering (© = 180°), 0, = 0, while or reaches a finite
nonzero value, proportional to C2. From Eq. (1),

o (©)=4.08 x 1073

o (180°) = 4.08 x 10-3k3/3C2/T2. (2)
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Figure 1: Sound scattering in a turbulent atmosphere. The unit vector ng is
in the direction of the wave incident on the scattering volume V, and n;, is
in the direction of the scattered wave.

This formula has been widely used for remote sensing of vertical profiles
of C%(z) by sodars, where z is the height above the ground. Indeed, a
monostatic sodar allows one to remotely measure the intensity of a sound
impulse scattered at the height 2, and hence the sound scattering cross-
section o at this height. Then, using Eq. (2), one can restore the dependence
of C% on z.

The dependence of or and o, on © in Monin’s equation, and hence the
considered technique for remote sensing of CZ, are valid only if the mean
value of wind velocity v is zero, and the mean value of the adiabatic sound
speed c is constant. However, this never happens in the real atmosphere.
Therefore, it is an interesting and important problem to derive an equation
for the sound scattering cross-section o for the case when the wind velocity
vector v (z) is not zero and depends on z, and when the sound speed ¢(z)
also depends on z.

This problem has been addressed in two papers; the first one was by
Clifford and Brown [1] , and the second by Ye [2]. Clifford and Brown’s
results have also been reproduced in many subsequent papers and reviews.
Clifford and Brown (2] argued that it is very difficult to derive an equation
for o for the case of arbitrary profiles of v (z) and c¢(z) in an atmosphere.
Therefore, they assumed that ¢ = const and that the wind stratification can
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Figure 2: Temperature, or, and wind velocity, o,, contributions to the sound
scattering cross-section versus the scattering angle ©. Dashed line corre-
sponds to o, solid line corresponds to or.

be approximately replaced by two homogeneous layers. In the lower layer,
v is zero, and in the upper layer v is constant and equal to the value of v
near the scattering volume. They also gave qualitative arguments that o,
calculated for this model of an atmosphere as two homogeneous layers in
relative motion, should probably be the same as for a realistic profile of v (z)
to the order v/c, which is always small in the atmosphere.

In a recent paper (2], Ye used an approach different from that of Clifford
and Brown, and came up with an equation for o for the same model of an
atmosphere as two homogenous layers in relative motion. Ye’s equation is
somewhat different from that found by Clifford and Brown, but in his paper,
Ye did not explain this disagreement.

In this paper, we report on what we have done in the considered problem.
First, we have derived an equation for o for the model of an atmosphere as
two homogeneous layers in relative motion by a rigorous approach. The
equation obtained is different from both Clifford and Brown'’s equation and
Ye'’s equation. Then we have explained why our results differ from both,
and also why theirs disagree with each other. Finally, and maybe most
importantly, we have derived an equation for o for the case of arbitrary
vertical profiles of v (2) and c(z). Here, it seems appropriate to present
these results in reverse order.
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2 A stratified moving atmosphere

Before deriving an equation for o for arbitrary profiles of ¢(z) and v(z), we
shall review some results from acoustics in moving media, which can be found,
for example, in the book Acoustics in Moving Inhomogeneous Media [4]. Let
us consider a sound wave propagating in an atmosphere where the wind
velocity vector is v. The surface of constant phase (i.e., the wavefront) of
this wave is denoted by ¥ (R), R = (z, ¥, 2) being the Cartesian coordinates.
The unit vector normal to the wavefront is denoted by n; it coincides with the
direction of the wave vector of this wave, k = nk. There are two velocities
associated with the considered wave. The phase velocity u,,, which is the
velocity of propagation of the wavefront, is given by u,, = (¢c+n-v)n and
is in the same direction as the unit vector n. The group velocity, ug, =
en + v = sug,, is the velocity of acoustic energy propagation of this wave. If
v # 0, the group velocity differs from the phase velocity. In particular, the
unit vector s in the direction of the group velocity does not coincide with
the unit vector n normal to the wavefront. When calculating the trajectory
of a sound wave, we should use the group velocity u,, and the unit vector s,
since s is tangential to the trajectory, while the uziit vector n is not. Finally,
consider this wave in the coordinate system comoving with the wind velocity
v. It can be shown that in the comoving coordinate system, the vectors k
and n remain the same, while s is changed. In other words, k and n are
invariant under Galilean transformations, while s is not.

Let us now calculate the sound scattering cross-section in a stratified
moving atmosphere. A schematic diagram of the problem is shown in Fig.
3. The source S emits a sound wave which is scattered by random inhomo-
geneities in the scattering volume V. One of the scattered waves is received
by the receiver R. The unit vectors sy and s are in the direction of propa-
gation of the emitted wave near the source and the scattering volume. The
unit vectors ng and n, normal to the wavefront of the emitted wave near
the source and scattering volume, do not coincide with sp and s, if the wind
velocity is not zero. Analogously, s, and so s are the unit vectors in the di-
rection of propagation of the scattered wave near the scattering volume and
receiver, while n, and ngy, are the unit vectors normal to the wavefront in
these regions. Let D be a small region which includes the scattering volume
and where the wind velocity v and the sound speed ¢ are almost constant.
We will derive an expression for ¢ in the coordinate system moving with
the same velocity v as the wind velocity in this region D. In this comoving
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Figure 3: Sound scattering in a stratified moving atmosphere. S is the source,
R is the receiver, and V is the scattering volume.

coordinate system, and in the region D, there is no wind, and the vectors n
and s coincide, as do the vectors n, and s,, and the equation for the sound
scattering cross-section ¢ coincides with that derived by Monin, as expressed
in Eq. (1). Noting that cos® = n-n,, Eq. (1) can be expressed in the
equivalent form

o=145x% 102

k'3 (n-n,)* [C% Luc +n'n’)]

(1-n-n,)"/* T?

7 2 (3)

Here, & is the wavenumber of the emitted wave in the region D. This equation
is valid in the comoving coordinate system. It has the same form in the
ground-fixed coordinate system because k, n, and n, are invariant under the
Galilean transformations. The next step in deriving the desired equation for
o is to express k and n - n, in terms of the unit vectors ng and ngs. This
can be done by using the refraction law for the normal to the wavefront in a
stratified moving atmosphere (see Eq. (3.48) of reference [4]), which is valid
in the geometric acoustic approximation. As a result,

co +ep - Vo, cosb
- —. (4)
c+ep-vycosf+v,sind

Here, v, and v, are the horizontal and vertical components, respectively, of
the wind velocity vector v in the region D; 6 is the grazing angle of the unit

k=ko
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vector n, so that n = (ecos#é,sinf), where e is the two-dimensional unit
vector in the direction of the horizontal projection of n. Quantities with the
subscript 0 are evaluated at the source-receiver height. We also assume that
%,z = 0. Furthermore, in Eq. (4)

_cosfp 1 — My + NMy/(1 - My)? — cos? 6y (N2 — M2)

8 .5
®EN (1— ML)’ + M2 cos? 6, (5)

where N = ¢g/c is the refractive index in a motionless atmosphere, M, =
cosfoeq - (v — Vo, 1) /co, and M, = v, /co.
The unit vector n, of the scattered wave can be expressed in the form
n, = (e,cos d,,sind,), where , is the grazing angle and e, is the unit vector
in the horizontal direction. Then, n-n, = e - e, cosfcos 0; — sinfsind,.
It follows from section 3.4.2 of reference [4], that e = e;, and e, = €g,s-
Therefore,
n-n, = e - €, cosfcosf, — sinfsin 4. (6)

The grazing angle 6, of the scattered wave in the region D can be expressed

in terms of the grazing angle 6o, at the receiver height by the formula similar
to Eq. (5):

_ Ccos 00,3 1-— MJ.,s - NMz\/(l - M.L,a)2 — cos? 90,: (N_2 - Mzz) (7)

where M_L,, = CO08 oo,seo,, - (V_L - VO'J_) /Co

Eqs. (4)-(7) express k and n - n, in Eq. (3) in terms of the unit vectors
no = (eycosfy,sinfp) and no, = (ep,s c0sbp,s,sinfy,). The apparent scat-
tering angle ©, is the angle between directions of the emitted and received
waves (i.e., the angle between the vectors s, and sy ,), which can be measured
experimentally. Using the relationship between the vectors n and s (see Eq.
(3.33) from reference [4]), one obtains

cos b,

ng - Do, + (€9 cos b + eg,; cosby,,) - Vo, 1 [y + V3, /2 @®)
[AB)'?

where ng - ng, = € - €5 cosfycosfy, — sinfysinby,, A = 1 + 2cosbypep -
Vo,_]_/Co +'U&_L/€%, and B=1 + 2C0800,,eo,, . VO'J_/CQ + ’U&L/q‘?

The sound scattering cross-section o (6) for arbitrary profiles of ¢ (z) and
v (z) can then be calculated by using Eqs. (3)-(8). For given values of eg, 6o,

cos O = s¢-sp, =
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€0,s, 0,5, the values of 6y, k, and n - n,, are calculated by using Egs. (8), (4),
and (5)-(7), respectively. Substitution of the obtained values of ¥ and n - n,
into Eq. (3) yields the sound scattering cross-section. This approach allows
one to calculate ¢ as a function of Gp. It can be shown from Egs. (3)-(8) that
o (6©9) depends on the values of the wind velocity and sound speed only at
the height of the scattering volume (v and ¢), and the source-receiver height
(vo and ¢g), and does not depend on the vertical profiles of the wind velocity
and sound speed between these heights. This is an important new result.
The vertical profiles of the wind velocity v (2) and sound speed c(z) affect
the ray path of the emitted and scattered waves, and hence the position of
the scattering volume. Finding this position is probably an involved problem,
but we do not need to solve this problem when calculating . This result has
probably not been understood previously.

3 Numerical results

Using Eqgs. (3)-(8), let us study the dependence of the temperature and the
wind velocity contributions to the sound scattering cross-section o7 and o,
on the scattering angle ©y. For simplicity, we assume that voi =0, v. =0,
and that all vectors in Fig. 3 are located in a vertical plane. We use ¢y = 340
m/s. Fig. 4 shows a plot of o7 (6y), normalized to 1.45 x 10-2ks/>C/T2, for
Gy = 25°, and v; = 0. A solid line corresponds to the case of Ac = ¢c—cy = 10
m/s, and a dashed line corresponds to Ac = 0. Due to a difference of
Ac = 10 m/s in sound speed between the height of the scattering volume
and the source-receiver height, the position of the minimum of or for Ac=10
is shifted from 90°. Furthermore, the finite value of Ac does not affect the
value of or for backscattering, i.e., for 6 = 180°.

Figure 5 shows a plot of o, (6y), normalized to 5.33 x 10-2ky/*C2/¢2, for
6o = 25°, and v; = 0. Again, a solid line corresponds to the case of Ac =10
m/s, and a dashed line corresponds to Ac = 0. As in Fig. 4, the finite value
of Ac causes a shift in the position of the minimum for o,, but does not
change o, for backscattering.

The effects of the wind velocity shift between the height of the scattering
volume and the source-receiver height on o7 (6) and o, (6y) are shown in
Figs. 6 and 7 for 6y = 25° and Ac = 0. A solid line corresponds to v; = —18
m/s, and a dashed line corresponds to v; = 0. A difference in wind velocities
between the height of the scattering volume and the source-receiver height
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Figure 4: Temperature contribution o7 to the sound scattering cross-section
versus the scattering angle ©, for v, = 0 and 6y = 25°. Dashed line corre-
sponds to the case Ac = 0, solid line corresponds to Ac = 10 m/s.

causes a shift in positions of the minima of o and o, from 90°. Furthermore,
or is not affected by this difference for backscattering, while o, is affected
significantly. The latter result is very important. According to this
result, both temperature and wind velocity fluctuations contribute to the
sound backscattering cross-section o (180°) = o7 (180°) + o, (180°), if there
is a difference in wind velocities between the height of the scattering volume
and the source-receiver height. In this case, measurements of o (180°) by a
monostatic sodar do not allow one to retrieve CZ unambiguously, because
Eq. (2) does not hold anymore. The contribution from C? may introduce
significant errors in such a technique for remote sensing of CZ, which are
often revealed in practice, and can even make it impossible in some cases.

4 Two homogeneous layers in relative motion

We have shown that the sound scattering cross-section ¢ depends only on
wind velocities and sound speeds at the height of the scattering volume and
the source-receiver height. This suggests a conclusion that ¢ in a stratified
moving atmosphere is equal to that for a model of an atmosphere as two
homogeneous layers in relative motion with the corresponding difference in
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Figure 5: Wind velocity contribution o, to the sound scattering cross-section
versus the sound scattering angle ©, for v, = 0 and 8, = 25°. Dashed line
corresponds to the case Ac = 0, solid line corresponds to Ac = 10 m/s.
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Figure 6: Temperature contribution o7 to the sound scattering cross-section
versus the scattering angle 6, for Ac = 0 and 6 = 25°. Dashed line corre-
sponds to the case v = 0, solid line corresponds to v; = —18 m/s.
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Figure 7:-Wind velocity contribution o, to the sound scattering cross-section
versus the scattering angle 6y for Ac = 0 and 8 = 25°. Dashed line corre-
sponds to the case v, = 0, solid line corresponds to v; = —18 m/s.

v and c¢ between the layers. This conclusion is proved rigorously below for
the particular case of ¢ = ¢y = const, and vy = 0. Sound scattering in an
atmosphere as two homogeneous layers in relative motion is schematically
shown in Fig. 8.

The derivation of the equation for o for the model in Fig. 8 is similar,
but not identical, to that for the model of a stratified moving atmosphere.
For the former model, we need to find a relationship between the vectors n
and ny, and the vectors n, and ng, at the interface z = 2z of two layers,
which is at rest. To find this relationship, we equate sound pressure of the
emitted wave at both sides of the interface, and equate sound pressure of
the scattered wave at both sides of the interface. As a result, we get the
refraction law for the normal to the wavefront at the interface:

Co Co
— . .t 0= —"— =
cosg-i-e v, + v, tan v e = ey, (9)
and Co
g * — £ - , = .
s, To VL= anf, = — 5o, & =0 (10)

Using Eqgs. (3)-(10), it can be rigorously shown that o for a stratified moving
medium is given by the same equation as that for two homogeneous layers
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Figure 8: Sound scattering in an atmosphere as two homogeneous layers in
relative motion. S is the source, R is the receiver, and V' is the scattering
volume.

in relative motion, if in these two models, the wind velocities at the height

of the scattering volume are the same.

The derived equation for o for two homogeneous layers in relative motlon
also allows us to understand equations for o for the same model derived by
Clifford and Brown (1], and by Ye [2]. We have shown that the equation for ¢
derived by Clifford and Brown is correct to order v/c to which all calculations
were done by these authors. If v, = 0, the equation for o derived by Ye is
correct to any order of v/c. However, if v, # 0, Ye’s equation is not correct
if the interface is at rest, i.e., if it is at some fixed height 2. As has been
shown above, the interface must be at rest if we want to obtain the same
equation for o for a stratified moving atmosphere and for two homogeneous
layers in relative motion. In reference [2], it was assumed that frequencies
of the emitted and scattered waves are changed at the interface. However,
this is correct only if the interface is moving vertically with the velocity v
and is not correct if it is at rest. (Note that there is no direct statement in
reference [2] about whether the interface is at rest or is moving,.)
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5 Conclusions

We have derived the equation for the sound scattering cross-section ¢ in a
stratified moving atmosphere with the vertical profiles ¢(z) and v (z). We
have shown that o depends only on the values of ¢ and v at the height of the
scattering volume and at the source-receiver height and does not depend on
the behavior of ¢(z) and v (2) between these heights. The effects of ¢ and
v on ¢ have been studied graphically. We have shown that in the presence
of a wind, the sound backscattering can be significantly affected by wind
velocity fluctuations. This can significantly complicate remote sensing of C2
using monostatic sodars. Finally, we have derived the equation for o for the
model of an atmosphere as two homogeneous layers in relative motion and
explained why the predictions by Clifford and Brown [1] are different from
those by Ye [2].
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Abstract

As was shown in a seventh symposium proceedings paper, acoustic scattering from a collection
of turbules moving with the average wind could account for the amplitude variations observed in
a shadow zone signal. That analysis assumed the frequency of the detected signal contribution
from each turbule was a constant value, either the same as the source frequency or slightly
deviated from it. The bandwidth so determined from relative changes of scattering geometry
among the distribution of turbules was significantly smaller than had been measured. In this
paper, the change in received frequency is accounted for as the scattering geometry varies with
turbule position relative to source and detector locations. The results presented are obtained by
calculation of time delays experienced as a signal travels from source to scatterer to detector in
the moving medium. The Born approximation far field scattering amplitude for the turbule is
evaluated for the scattering angle and frequency in existence when the signal reaches the scatterer
location to relate the scattered signal magnitude to the incident signal magnitude. The bandwidth
of the received signal varies with turbule size. The signal spectrum from several scatterers of
mixed sizes is compared to that observed in a recent experiment.

1. Introduction

The conclusion of the paper published in the proceedings of the previous symposium [1] was that
the bandwidth of a shadow zone signal modeled by scattering from turbules moving with the
average wind but having no relative motion with respect to each other would not be wide enough
to represent experimental findings. In the analysis of that paper, the signal received by the
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detector was assumed to be the same form as that generated by the source. Only the magnitude
change caused by the scattering process was accounted for. In this paper the effect of motion on
the phase of the scattered signal is taken into account. The analysis presented below has been
simplified from that necessary to account for ground reflections and wind speed gradients. Thus,
the picture is that of a source and detector isolated from the ground maintained in unchanging
relative positions, but at the same time subject to a uniform constant wind field. The scatterers
making up the turbulence model are considered swept along by the wind field. In simplest terms,
the characterization of the detector signal in terms of the source signal would be the same as if
the scatterers were airborne objects like balloons rather than turbules. In our case here, rather
than use the scattering amplitude for a balloon, that for a temperature turbule is used. The
scattering properties of temperature turbules are somewhat less complex than those for velocity
turbules, which were employed in the previous paper. In this picture, ground reflection effects
and the direct signal will not be treated.

2. Doppler frequency shift in the experiment geometry

Proceeding from the picture depicted in the introduction, a coordinate system is imposed in the
following fashion. Suppose a coordinate system is attached to the geometry of a real world
experiment involving a wind induced shadow zone. In this precursor coordinate system, the
wind velocity is directed generally towards the source from the detector, the source and detector
positions are a few meters away from the x-axis and the source - detector separation is a few
hundred meters. To simplify the mathematical description and minimize the number of
geometric parameters, move the origin to the source, rotate the axes until the x-axis is parallel to
. the wind velocity vector, and then rotate the y - z axes about the x-axis until the detector is in the
new x - z plane. In the new coordinate system, the path of a single scatterer is a line parallel to
the x-axis with it’s x coordinate the only one changing with time. The source coordinates are all
zero, and the y-coordinate of the detector is zero. This coordinate system applicable to a constant
and uniform wind field picture allows a general placement of the scatterer path identified by the y
- Z coordinates of the path intersection with the y - z plane.

At the beginning of our investigation it was not clear that such simplifications of the problem as
described above would produce significant results. The first clue that a reasonably good
approximation to the true answer could be obtained from a simple geometry resuited from
calculation of the Doppler shift for an even simpler geometry, namely one wherein the scatterer
path is in the x - z plane. A plot of the frequency shift generated by a scatterer located in the x - z
plane is presented in figure 1 for typical experimental conditions. Data for this graph was
calculated from the relation [2] given in equation (1) . In the equation, € is the ratio of the

g = Be(k - 7) (1)

Doppler shift frequency to the wave frequency, [—3 is the wind velocity vector divided by the

acoustic wave speed, k is the unit vector in the direction of the incident wave, and 7 is the unit
vector in the direction of the scattered wave to the point of interest, typically the detector
location. The large center dot () indicates the vector inner product. In the figure, the detector
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location vectoris d = 325% - 10 and# = -001%. Infigure 1, the quantity 500 € is
plotted as a function of the x-position for a for three different z positions. The scale is set to
show the asymptotic tendency of the shift frequency. Thus, on the down-wind side of the
detector, the frequency shift approaches +10 hertz, while on the up-wind side of the source, the
frequency shift approaches -10 hertz. The z axis scale is expanded in figure 2 to show more

Scatterer Doppler Frequency Shift in a Unitorm Wind Fiold Scaterer Dopplor Froquency Shift in a Unfom Wind Rekd
v v v v . r v 02— v 4 " r vy
Coondinato system origin al source, detactor at d » [325,0,-10) Coordinato system origin ot source, delector 81 d = {325.0/-10)
101 Sourco troquency, 500 hz; Mach numbet -0.01 Source troquoncy, 500 hz, Mach number -0.01 - ./ ¢

£ ¥ 0wl
g . -..-;—."_': ‘ g o
; -0.05
k) s
— 2u=50m
g bt 14 -018
-10p
2 " =02
° ) 100 w0 =0 300 °
Figure 1. Doppler frequency shift Figure 2. Expanded scale Doppler

frequency shift

clearly the nature of the frequency shift variation in the region between source and detector. The
frequency shift for a scatterer whose elevation is between 13 and 17 meters is observed to be 0.1
hz at about 220 m and -0.1 hz at about 70 m. The conclusion is the frequency shift resulting
from the Doppler effect is sufficiently large -to . approximate bandwidth measurements
encountered in shadow zone turbulence scattering experiments.

3. Geometry for the shadow zone signal calculation

Returning to the geometry described in the first paragraph of Section 2, a general identification of
the numerous vectors involved is presented in figure 3. In this figure, vectors for three time
instants are defined. The first instant labeled t; is the time an arbitrary impulse is imparted to the
medium by the source. The thinking here is that although the source supplies energy to the
medium in a continuous fashion with respect to time, we are isolating for consideration a
vanishingly short portion of the signal. The second time instant labeled t, is the instant at which
the signal impulse reaches the scatterer. The third time instant labeled t4 is the time at which the
signal impulse manufactured by the scatterer at time t; reaches the detector. In the calculation, tg
will be considered the independent variable which means that a progression of detector times will
be selected for which the signal characteristics at the source will be determined. These source
signal characteristics after propagation will constitute the detector signal and will be determined
based upon what happened at the source at t; and at the scatterer at t,. The scatterer position
vector is presumed known by the expression in equation (2) . In equation (2) , p(?) is the

Bt) = Po+¥t @
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position vector at time t, B, is the position vector at time zero, and ¥ is the velocity vector. The
vectors necessary or auxiliary to the calculation are defined mathematically in equation (3) .

v
P,
P,
Tao
a1

T

Vv, X = cpux m = JF

p.* + p,% + p55 d =d i + d,3
p(t;), B, = p@t,) b, = p,)

-p, ¥y - (p, - d)i;

d —_
D;;

- (3)
T
4> Fp = d - f’p

2 = ﬁp

e e~ 1]

These relations are given to show the sign convention of the vector components. The quantities
and locations labeled in figure (3) are described in the following sentences. S is the scatterer

Figure 3. Calculation geometry and coordinate system.
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location; D is the detector location, P, is the scatterer location at time t;, P, is the scatterer
location at time t;, and Py is the location of the scatterer at time ty. The perpendicular vector
from the scatterer path (at D’) to the detector is 7,, whereas the perpendicular vector from the
source to the scatterer path (at S’) is 7,,. The 7, vector is from Py to the detector. The 7, vector
is from the source to Ps. The 7, vector is from P, to the detector. The 7, vector is from the
source to P,. The latter two vectors are not shown on the figure. The vector ¥ is shown directed
as if all it’s components are positive. The quantity i might be termed a signed Mach number.
The quantity m is the magnitude of .

The relations in equation (3) , being vector relations, are general and will give correct answers
regardless of the value of the time at which equation (3) is evaluated or the orientation of v. The
answers are thus correct in the different regimes associated with the scatterer motion. The
different regimes are ten in number: 1) all scatterer locations beyond D*, 2) ..., 5) P and Pp
are between S’ and D’ with P4 beyond D’, 6) .. ., and, 10) P; and Py, short of S’ with P4 between
S’ and D’. In the following, attention must be paid to the concerns connected with translation of
vector length calculations back into the appropriate vector expressions.

In figure 3 observe that in general the vectors (7,,, 7y, , 7;,) are in a single plane and the vectors
(F9» Ty» T,5) are in another plane. The common feature of these two planes is the scatterer path.
Since the entire problem before us is resolved if the times (tp, t;) are calculated knowing t;, and
since time is a scalar quantity, it is appropriate to make the calculations using scalar relations. To
accommodate this idea, the various r-vectors are represented by p symbols with the same
subscripts where the various p’s are the vector magnitudes. Accordingly, the detector vector
plane may be revolved around the scatterer path into the source vector plane and be represented
as shown in figure 4. The symbols in figure 4 that have not been defined before are: D’ is the
location of the detector after rotation of the
detector vector plane; &, is the distance from P
to Py; 9, is the distance from P, to Pg; 0, is the
angle between the more positive end of the
scatterer path and the ray path p, atP;; and, 6,

D P P L]
4 o o b o
LA L
r" 0oty H ’ )
U ’,d' . 4 g 4
R e ! J

°
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Figure 4. Geometry of scalar quantities

is the angle between the more positive end of the
scatterer path and the ray path p,,. This picture
and these definitions make the physics of the
problem easier to describe. After the impulse is
transferred to the medium by the source,
everything happens in the moving medium. The
impulse travels along the ray p,, which appears to
be attached to the scatterer. It arrives at the time
tp when the scatterer is at Pp. The scatterer

emits a spherical wave front. Since this spherical
wave front is also traveling along in the moving

medium, the ray which intersects the detector location at tg is p,,. The scatterer moves the
distance O, in the time taken by the impulse to travel from the source to the scatterer. Likewise,
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the scatterer moves the distance d, in the time taken by the impulse to travel from the scatterer
to the detector. Equation (5) expresses these relationships. In equation (6), the x position of the

8, = Hp; 8 = upy (5

scatterer x,, is determined in two ways, from source related quantities and from detector related

_p:l COS(BI) = xp - P«P:l

6
=P cos(9,) X, — d.= Wpy ©

quantities. By identifying the symbols S, and S, as the sign of the respective cosine

functions above, the relations of equation (6) may be represented as in equation (7). Subtracting
the two relations in equation (7), an expression is obtained relating p,, to p,, and constant

=S, ;- pfo)m = Xx, = WUp, D
~Sea P — P2 = x, - d, - pp,

geometric quantities. Two suitable squaring operations will produce a quartic relation between
these two variables which may be useful in an analytical investigation. For a numerical
investigation, the situation is much simpler. The relations for the calculation of the time z, are

in equation (8) where x, is the x position of the scatterer at time ¢,. Squaring the first

P = [d, — x)* + pi + (d, - p)1”
t, = t; = palc Fa = D(t) @®)
xp = i.az

expression in equation (7) and solving for p,, results in equation (9). In equation (9), the radical

1
Pa = (ﬁ)[i\/?z - Bk - llxp] )

term is dominant with both x, and p sign sensitive. For p,, to be positive, the sign of the
radical must be positive. Finally, calculate t; and determine 7, as in equation (10). In the

t.\‘ tp - psl/C; ;il = ﬁ(t:)

~ - . _ (10)
k TalPas Fo= Tylpg

equation, and in accord with usual scattering practice, the incident wave direction and the
scattered wave direction have been defined by the unit vectors k and 7 respectively.
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4. Bom approximation scattering for a plane wave

Scattering theory for plane waves begins with the inhomogeneous wave equation given in generic
form in equation (11) for the pressure variation n(F) ™' (¢ = @/c = 2= f,).

(V2 + E'nF) = -4nSFE @) (11)

The function S(F) is a localized stationary operator that depends in general on the temperature

and/or velocity variations in the medium. Given an incident plane wave n, (F) = e**7, the
implicit solution to equation (11) is shown in equation (12). In equation (12), n,(F) is the

nF) = M,@FE) + nF)

NG = [dn et SEING) (12

scattered field, and r,, = | r - n | is the distance from a point local to the media variation

to the observation point 7. The integration symbol above indicates a volume integral over all
space. In the far field, the scattered wave has the form shown in equation (13). In this

nF = e fPIr 13)

expression, f(F) is known as the scattering amplitude and has the dimensions of length. The
specific form of the integral for the scattering amplitude is shown in equation (14). The

FB) = [dre™* ™ SE) @) (14)
)

s

integration need only be over the scattering volume V, associated with the detector located in the
direction 7 and assumed to be in the far field. In the First Born Approximation, the incident
field is substituted for the field interior to the scattering volume. This substitution is reflected in
equation (15). The new scattering volume V, is determined by the intersection of the volume

FP) = [dPre* s el (15)

Y,

14

illuminated by the source and the volume observed by the detector. Since the object in this paper
is to treat turbulence as a superposition of turbules the scattering amplitude for a single turbule is
the goal of this derivation. The scattering volume need only be over the space for which S(7}) is
essentially different from zero. With these assumptions in mind and specializing to temperature
turbules, the expression in equation (16) results after an integration by parts and supposing the

() = (P1anT) ke [d’r AT (F) e R, R = k¢ - B (16)
Vl
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accompanying surface integrals to be zero. The construct AT, (7;)/ T_, is the relative temperature
field with 7, the asymptotic constant temperature far from the turbule. This relation has been
given previously [3] where the integral is a Fourier transform for the variable K which is
denoted by the symbol AT},(I?) . The dot product before the integral sign in the notation of this
paper is cos(y) where y is the scattering angle.

In connection with the above development, notice that the time dependence has been suppressed
but that it can be reintroduced by simply multiplying by it. Therefore, the theory presented in this
section, applicable to propagation and scattering in a medium with time invariant conditions,
shows that the source signal time history is reproduced exactly if the source is sinusoidal. Since
the approximations are first order, superposition holds which means that a source signal with a
finite range of frequency components would be accurately reproduced by the scattering process.
The conclusion is that our method of inferring the source state that caused a particular detector
state outlined in Section 3 is accurate to within the assumptions of far field First Born
Approximation scattering theory for an invariant medium. Application of this theory to the case
of a moving medium is the subject of the next section.

5. Application of scattering theory

The intent in this section is to present the specific form of the detected signal for a temperature
turbule with a Gaussian envelop function E,.( y). From equations (19), (22) and (34) of the
reference [3], the definitions in equation (17) are extracted. In equation (17), 8T isa

T(Ra) = n* (8T) B.(K a)

- 2 (17)
B.(y) = 7"

temperature variation amplitude and a is the characteristic size of the turbule. The form of the
corresponding scattering amplitude is shown in equation (18). The detector signal is assumed to

f+(F) = n¥k*a*(6T14 7 T.) cos(y) e X+

- R R 18
B = G - beGG - k) = 2k*AQ - cos(y)) ®

be proportional to the sound pressure amplitude P, at the detector location. This quantity is
related to the reference sound pressure amplitude P, at a distance R from the source in general
by the expression in equation (19) where r, is the source - scatterer distance and r, is the

R
P, = Pxf(f')( ) (19)

r,

scatterer - detector distance. The assumption is made in equation (19) that the incident wave at
the scatterer is a plane wave whose exitance (watts/meter?) is that of a spherical wave originating
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at the source location. It is now possible to write down the detector signal amplitude s,(z,)
which is done in equation (20). The last ingredient is the form of the source signal s,(¢,) .

s,(t,) = 7K ad ( 2 fTw)(;c:ls(g;)]exp(—(k a)*(1 - cos(y)/2)s,(t) (20)

This is given in equation (21). The factor S, is a constant related to P, R in equation (19). The

s,() = S,sin2%f,1)

k = k@), cos(y) = cos(y(t,) @n

symbol f, is the constant frequency of the source. Implied in the formulation of equation (21) is

that the source is an isotropic radiator. Also indicated in equation (21) are the evaluation times
for the symbols (k, y). The assumption is made here that these two quantities should be

evaluated at the scatterer location. The symbol k involves the frequency and a geometric
argument easily gives the ratio of the frequency at the scatterer f, to the source frequency as

shown in equation (22). The cosine factor may be determined from the dot product of two unit

folfo = 1 — Bek = 1 — BeF,
k(t,) ko1 - Be?) k, = 2mf,/c

xRy

(22)

vectors as shown in equation (23). A partially expanded version of the signal equation is shown
cos(y(z,)) = Faofy = Fyefy/(P,Pa) (23)

in equation (24). Equation (24) is the basis for the calculations and results reported in this paper.

s,(8)) = €A - Peiy)? ("—"5“—)sin(koct,)

(P Par)’
expl-(x2 /2 - '-ﬁ)’[l - (—F‘”a")]
p{ DU = Bl Pu Pa 24)
T
_ 2
C == x°a(47tTw)S’
Xo = kya

The next section details how the calculations were carried out.
6. Model computational strategy

The experiment from which the data of interest comes is similar to one that has been described
elsewhere [4]. The detector disposition and the data processing in the reference were the same as
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that for later experiments in 1996. The available data was taken between 17 September and 29
October. The source in these experiments was a 24” horn placed adjacent to detector 14 at the
325 meter mark. It was at the top of the 10 meter tower used for four temperature sensors. The
tower was 10 meters to the side of the detector 14 on the north side of the runway. The source
was excited by six tones combined on a tape that was played into the amplifier driving the horn.
The data set of direct interest is the one identified with the number GA3006. This data was
recorded between 2:27:00 and 2:41:60 P.M (for a total of 900 seconds) on 29 October. Of the six
tones used at this time the one at 500 hz is of immediate concern. Temperature, wind velocity,
and wind direction data was also recorded. A tripod mounting a cup anemometer and a wind
direction sensor was located at about 590 meters from detector O slightly to the north of the
runway center line. The source was directed towards detector 9 at the 200 meter mark and was
pointed down at an angle estimated here to be 12.5 degrees. Primarily, the data from detector 26
at the 650 meter location will be that addressed. The prior analysis that was performed on the
original data resulting in the present data set is described in the Journal article [4]. In brief, the
process was as follows using procedures written for use in MATLAB [S]. The original data,
which was sampled at 8000 hz consisted of 7,200,000 points. This data set was then addressed
in 4096 point increments. A Fourier Transform (FT) was applied to each increment. This
spectrum was then frequency shifted approximately 400 hz lower and filtered. The exact
frequency shift was such that a 500 hz component would appear at 101.5625 hz. An Inverse
Fourier Transform (IFT) was performed and the resulting increment was decimated 20:1. Data
from all increments were assembled in a new data file for each frequency at each detector site;
thus each data set contains 360,000 data points with the interesting signal at approximately 100
hz with sampling at 400 hz.

The model computational strategy mimicked the above data reduction scheme for the most part.
The source frequency was set to be f, = 500 hz and ¢, was incremented at 1/8000 second

intervals starting at zero for successive slices containing 4096 points. The detected signal at each
time in the slice was computed using equation (23). In the only change from the data reduction
scheme, the resulting time series were accumulated for ten slices (a group) before frequency
shifting and decimation was applied. No filtering was applied because we are dealing here with a
noiseless theoretical data set. The number of ten-slice groups calculated was 20 covering 102.4
seconds. It was found for all three turbule sizes that this time period was sufficiently long to
allow the turbule to travel completely through the scattering volume. The calculated data sets
were padded with zeros so that the resulting real number data array contained 360,000 elements.

7. Presentation of results

Additional information concerning the experimental measurements identified by the designation
GA3006 are relevant to the results to be presented. The orientation of the detector array was 315
degrees magnetic north. The average wind direction during the data taking period was 307
degrees. Cup anemometer data taken at a height of two meters indicate an average wind velocity
of 2.662 meters/second. The average temperature at a height of 0.49 meters was 10.204 Celsius.
The average temperature at a height of 1.12 meters was 9.8327 Celsius. Using a grass height of
0.05 meter, the computed wind speed and sound speed profiles are shown in fig. 5. These
profiles are for components along the detector array axis. They show that the wind and sound



Heighy, mators
3 % 8 R 8

Sr

-
n O

0

Figure 5. Wind and sound speed profiles

40

385

speed profiles have the majority of their variation
belowl0 meters. Our assumption of uniform
wind and sound speed should give a good
approximation to the true state of affairs. There
will be some ray bending that will not be
accounted for. Curve data for a height of 25.0848
meters shows the wind speed to be 3.1052
meters/second and the sound speed to be
340.0489 meters/second. These are the values to
be used in the model. Translating to the model
coordinate system, the chosen starting parameters
for the calculation are recorded in equation (25).

The position of the turbule path was chosen

somewhat arbitrarily. The main consideration was to have the turbule initially outside of the

p, = 35, p, = 100, p, = 150948

d, = 325 d, = -100

7 = -31052% ¢ = 3400489, p = -0091 (25)
f, = 500, A, = 0680l

X, = 2®™a, /A, = 16667, a, = 1804

scattering volume. The nominal wavelength A, is specified above and is the wavelength of a
500 hz wave in the moving medium. The largest turbule size a, was somewhat arbitrarily

chosen on the basis of previous work [1]. The time history of the signal amplitude as this turbule
passed through the scattering volume is shown in fig. 6 for 102.4 seconds of the model
calculation. Another turbule of the same size on
the same scatterer axis path will produce a
scattered signal similar to the one shown. The
only difference will be that it will be displaced n
time. The difference in the calculation algorithm
will be that p, will change. In the FT regime for

a 900 second data interval, the harmonics are
spaced 1/900 hz apart. To delay the first
harmonic a time Ar seconds would require a

phase delay of 2 ® At/900 radians. To delay the

second harmonic this same time interval would
require a phase delay of 4t A¢t/900 radians.

The phase delay for harmonic n would be
21 n At/900 radians. To delay the entire

turbule, then, requires only that each spectra
component n be multiplied by the factorexp(—2 n ni At/900). The corresponding displacement

of the starting position would be Ap, = -—v, Az. This scheme was used to generate the
signal for four additional identical turbules; the signal magnitude result for all five turbules is

x10™ Sound Prossure Amplude va. Time

-

hw

Single Turbulo, Radius = 1.804 m
IP350m, S - D Range 325 m
Source at 500 hz.

-
¥

[
n

Retativa Sound Prossure
-]

Figure 6. Single turbule scattered signal
time history
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shown in fig. 7. The spectra for the single turbule and for the multi-turbule signals are shown in
fig. 8. In fig. 9, the spectrum for a single turbule

geki0t  SodPessreMagideveTime 000 is superimposed upon the measured spectrum. In
Muttple Terbudes, Radius @ 1.804 m. S ~ D Rangs 325 m, Source #1500 1z, the latter, the amplitude of the model spectrum

2 1 has been multiplied by 1,500,000 to more clearly
gm | show the resemblance. In addition, the spectra
3 from single turbules whose sizes were 1.4937 m
18 { and 1.2368 m are included in fig. 9 to show the

é variation of the bandwidth with turbule size. The
o4 1 three half amplitude bandwidths were
ok approximately 0.084, 0.108, and 0.127 hz in

e sacons ® descending order of turbule radius.

Figure 7. Multi-turbule scattered signal
time history
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Figure 8. Model spectra for a single turbule Figure 9. Model single turbule spectrum
and five turbules and measured spectrum

2. Summary of results and conclusions

Subject to the assumptions made in the development of the theory presented in section 3, the
close agreement between the measured and mode] bandwidth exhibited in fig. 9 suggests that the
difference in Doppler frequency shift with scatterer position is the primary cause of, or a major
contributor to, the bandwidth of wind induced shadow zone signals. An interesting facet of our
results is the universal nature of the frequency shift function. Universal as used here refers to the
fact that any scatterer of any type or size will produce the same phase shift function, the integral
of the frequency shift function, as it moves along a given path provided the Frozen Turbulence
Hypothesis holds to a reasonably good approximation. A second facet of this work that is of
significance is the realization that turbules of the same size class manifest themselves in the
frequency domain as components of the signal differing by a known phase function. The
spectrum of the signal has a noise like appearance when many turbules are hidden in it.
Obviously, these many can be resolved by a simple Inverse Fourier Transform operation in
theory using our noiseless model. How many turbules can be resolved in actual experimental



387

data with a non-zero signal to noise ratio? A curious feature of the signal is that, in the case of
the data set examined in this paper, just a few components (two or three hundred) in the
frequency domain carry all the turbulence distribution information contained in 360,000 data
points in the time domain. The many turbule spectrum of figure 8 and the measured spectrum of
figure 9 were not smoothed so that their resemblance (subjective appraisal) can be appreciated.

It is important here to comment on the results presented in another paper in the proceedings of
the last symposium [7]. These authors examine the coherence time for an experiment similar to
the one cited in this paper. For upwind propagation at 500 hz and 325 m distance, a value of T=
0.4 seconds is given in their figure 4. If 2mr A f T = 1, then A f = 0.4 hz would be the
corresponding bandwidth. For data set GA3006, the radiation pattern in the backward direction
is not known. Reasoning from an assumption of a piston in a sphere [8] for y = 3, the backward
intensity pattern has a narrow peak with a maximum intensity of one-tenth of that in the forward
direction and has other structure. Rather than this, our theory above assumed an isotropic
radiator. Our result was about 0.1 hz. This value was for a few large temperature turbules,
however. In figure 9, the central peak of the measured spectrum is surrounded by a region that
falls off more slowly than the peak region. This portion of the spectrum probably results from
scattering of large numbers of smaller turbules. Our figure 1 shows that a small isotropic
scatterer moving through an extended experimental region would produce a frequency change of
20 hz given sufficient source power. Thus, the possibility exists that the bandwidth given by
Galindo and Havelock [7] can also result from the "locally frozen" [9] turbulence assumption. It
seems clear that some combination of horizontal and vertical Doppler shifts are the primary
cause of shadow zone signal bandwidth spreading. The horizontal component will disappear if
the scattering volume is completely in the far field. It is also clear that proper differentiation of
the influence of different turbule size classes is essential for the theory of this paper to represent
the entire scattered signal spectrum. Can the data be decomposed into turbule size class
components rather than frequency components? Perhaps some form of analysis using wavelet
theory will prove that the answer to this question is yes.

The authors wish to express their appreciation to Dr. David I. Havelock of National Research
Council of Canada for supplying the experimental data used in this paper, for advise concerning
data processing, and for several suggestions on the paper itself. We also wish to thank Dr. Keith
Wilson for providing the code used to calculate the sound speed and wind speed profiles.
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